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Discriminative Star Coordinates
Yunhai Wang, Feiping Nie, Dirk J. Lehmann, and Minglun Gong

Abstract—We propose discriminative star coordinates (DSC) in order to preserve class structures of high-dimensional data within
the related 2D projection. Our novel visualization approach for high-dimensional data utilizes the subspace selected by a linear
discriminant analysis (LDA) to visualize data-specific class separation. While LDA can handle labeled data, we introduce generalized
unsupervised LDA to facilitate dealing even with arbitrary kinds of unlabeled data. For this, data clustering and subspace selection
are coherently combined. Since LDA projects k classes of m-dimensional data into k− 1-dimensional space (or less), our concept
can be extended to a discriminative star coordinates matrix that allows us to explore the majority of important cluster structures of the
data at once. To support the users’ interactive exploration of classes of interest, we present a two-stage exploration scheme where
DSC and principle component star coordinates (PCSC) configured by principle component analysis (PCA) are integrated together.
Meanwhile, a set of structure-aware interactions are provided. This includes interactively steering the number of relevant clusters,
structure-aware axes manipulation, and a linked parallel coordinates view. We demonstrate the effectiveness of discriminative star
coordinates in visual cluster analysis with a couple of experiments for synthetic and real high-dimensional data.

Index Terms—Star Coordinates, Multivariate Visualization, Linear Discriminant Analysis

1 INTRODUCTION

Technology advances let high-dimensional data frequently occur
in many application domains, such as information retrieval,
computational biology, and text mining. To help the user to gain
insights from such data, many techniques have been proposed.
Among them, visual cluster analysis is an effective way to facilitate
exploratory analysis [6], which tightly combines cluster analysis
techniques and interactive visualization methods. However, clustering
such high-dimensional data is a big challenge due to the curse
of dimensionality [30]. This restricts the interactive visual cluster
analysis of high-dimensional data.

A common approach to address this problem is to use unsupervised
dimension reduction techniques, to project the high-dimensional data
onto a low-dimensional subspace before visual cluster analysis. Once
a suitable low dimensional (i.e., 2D or 3D) subspace is obtained, many
existing visual cluster analysis techniques [30, 31] can be applied.
However, one subspace determined by dimension reduction does not
include all cluster structures of high-dimensional data. Moreover,
some widely used dimension reduction methods in the visualization
community, such as principal component analysis (PCA) [17] and
multidimensional scaling (MDS) [21], treat each dimension uniformly.
Unfortunately, a large number of dimensions in high-dimensional data
are irrelevant [39].

Another approach is to directly map m-dimensional variable
space to a 2-dimensional plane by using visualization schemes,
such as scatterplot matrix [2], parallel coordinates [13], and star
coordinates [18, 19]. Although scatterplot matrix and parallel
coordinates both have their own advantages, they also treat each
dimension uniformly and thus they are generally not effective in
discovering cluster structures of high-dimensional data [6]. Moreover,
they are limited by the dimensionality of the data (usually 20
dimensions at most).

Although star coordinates are a variant of circular parallel
coordinates, they allow the user to assign a 2D weight vector to each
dimension so that irrelevant dimensions can be suppressed. Based
on a 2×m weight/proejction matrix, they map m-dimensional data
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onto a 2D linear subspace. In star coordinates, each dimension
corresponds to an axis which is arranged on a circle with the origin
at the center. By allowing the user to interactively adjust each axis,
star coordinates can be taken as a form of interactive dimension
reduction [9]. With carefully refined projection matrices, the cluster
structures of high-dimensional data can be revealed. However,
designing such projection matrices is a tedious trial-and-error process.
Moreover, even given such projection matrices, it is hard for the user to
explore the class structures in star coordinates without cluster analysis,
especially when data is large.

We propose discriminative star coordinates (DSC), which enable
a semiautomatic visual cluster analysis of high-dimensional data.
First, we show that the projection of star coordinates is a special
case of linear dimension reduction and then we configure the star
coordinates with the subspace extracted by linear discriminant analysis
(LDA) [16]. LDA is a well-developed linear dimension reduction
method, which is able to find the best subspace to discriminate
different clusters. However, LDA is a supervised dimension reduction
method and can only work for labeled data [7]. To deal with general
unlabeled data, we introduce unsupervised LDA (ULDA) [11], which
adaptively selects the most discriminative subspace by combining
LDA and k-mean clustering. Since it uses discriminative subspace
for clustering, irrelevant dimensions can be depressed. For the data
with k classes, LDA or ULDA provides k− 1 dimensions subspace.
When k > 3, 2D star coordinates cannot show all of them. We propose
a discriminative star coordinate matrix, which consists of all possible
discriminative star coordinates of k−1 dimension subspace.

This automatic subspace selection and axes configuration scheme
provides an overview of the class structure in the data to the
user. To further reveal class structures and their relationship to
dimensions, we present a two-stage exploration scheme, where DSC
is coherently combined with principle component star coordinates
(PCSC) configured by PCA. In this scheme, DSC is first used to
explore the separation between different classes and then PCSC is
applied to reveal the dominant dimensions of classes. Under this
scheme, several structure-aware interactions are provided. First, we
allow the user to adjust the number of clusters and compare different
star coordinates with morphing. Second, the user can interactively
manipulate each axis to explore the discriminative ability of each
dimension and the correlation between different dimensions. Last, a
linked parallel coordinates view is provided to help the user explore
the class distribution at the original dimensions. In summary, the main
contributions of this paper include:

• We build the relationship between star coordinates and linear
dimension reduction and propose discriminative star coordinates



which can reveal the cluster structures of high-dimensional data
in 2D space;

• We introduce unsupervised LDA to automatically select the most
discriminative subspace while identifying meaningful clusters
from the high-dimensional data;

• We present a two-stage structure exploration scheme to help the
user explore the relation between the cluster structures and the
dimensions of high-dimensional data.

The rest of the paper is organized as follows. We provide a brief
summary of the related work in Section 2. The LDA and ULDA
supported discriminative star coordinates are described in Section 3.
The structure-aware interactions are introduced in Section 4. After
presenting our case studies and discussions in Section 5 and Section 6,
we conclude the paper in Section 7.

2 RELATED WORK

In this section, we review related multidimensional data visualizations
in cluster analysis. A subset of those techniques - namely the family
of star coordinate approaches - is subsequently considered. We close
the discussion by techniques on subspace clustering analysis.

2.1 Multidimensional Data Visualization
Multidimensional data visualization - also known as multivariate
projections - are techniques which project high-dimensional data from
the data space onto a lower-dimensional (usually) 2D visualization
space. They facilitate insights into the data but generally cause a loss
of information. To overcome this, they often come with interaction
techniques making a visual search for relevant subspaces feasible.

By showing all pairwise combinations of scatterplots, a scatterplot
matrix [2] provides to reveal all pairwise correlations. Parallel
coordinates [13] represent the dimensions as a set of parallel axes
and render each data tuple as a polyline. These methods are tailored
to visualize correlations and trends, but are not effective for cluster
analysis. Recently, researchers tried to enhance the cluster analysis of
these methods [15,41]. However, they can only handle 20 dimensions
at most due to their poor scalability, except [22]. A complete review
of these methods is beyond the scope of this paper; please see Keim et
al. [1] for more details.

Dimension reduction is another widely used method to visualize
data with large dimensions. It is achieved by first projecting
m-dimensional points to 2D points with unsupervised dimension
reduction methods and then visualizing these points with 2D
scatterplots. The most commonly used dimension reduction methods
for visual data analysis include PCA [17], LDA [16], and many
variants of MDS [4]. PCA is an unsupervised method that purses a
subspace preserving the maximal data variances, while LDA selects
the best subspace to separate different classes from a labeled data
set. To combine the advantages of these two methods, Choo et
al. [7,8] propose a two-stage framework for the visualization of labeled
data. They first use LDA to obtain reduced dimensional data, which
preserves the cluster structure in the data, and then map the data to a
2D scatterplot with PCA. Oesterling et al. [29] use a similar two-stage
framework to visualize classified document collections. Unlike these
two methods, MDS takes a matrix of pair-wise distances between all
data pairs and computes a position for each point in low-dimensional
space where the distances between data pairs are preserved. By
converting the data into low dimensions, dimension reduction provides
a means to explore the structures hidden in the data. However, the
original dimensionality information is lost and thus the result is hard to
explain. Value and relation (VaR) display [38] proposed by Yang et al.
is an exception that visualizes the dimension correlation by mapping
dimensions to a 2D space with MDS. However, it does not support
cluster analysis.

The same problem in scatterplot matrix, parallel coordinates and
dimension reduction methods is that they all treat each dimension
uniformly. However, a large number of dimensions are irrelevant in
high-dimensional data [39]. LDA is an exception, but it can only work

on the labeled data [7, 10]. In this paper, we introduce unsupervised
LDA to handle unlabeled data.

2.2 Star Coordinates
The method of star coordinates is proposed by Kandogan et al. [18,19].
They are defined by uniformly arranging m coordinate axes on a circle
with the origin at the center. Traditionally, star coordinates are viewed
as a variant of parallel coordinates. However, they do not show the
exact value of dimensions and instead represent a 2D linear embedding
of the original data by using a projection matrix defined by m axes. In
this paper, we explain how this representation is related with linear
dimension reduction.

Star coordinates have been used for visual classification [34] and
volume data exploration [3]. Recently, they have been extended in
various ways. Coorprider and Burton [9] extend star coordinates
into three dimensions, and Shaik and Yeasin propose to automatically
find the best configuration of 3D star coordinates based on MDS
results [32]. They are also extended to explore continuous attribute
spaces [27] and orthographic projection [23]. By interpreting the
projection of star coordinates as a subspace, we extend the concept
of star coordinates to discriminative projections.

2.3 Subspace Clustering
Cluster analysis of high-dimensional data suffers from two
problems: the existence of irrelevant dimensions and the curse of
dimensionality [39]. The irrelevant dimensions can confuse clustering
algorithms by masking clusters in noisy data, while the curse of
dimensionality makes the distance measure become increasingly
meaningless. Due to them, the traditional full-dimensional clustering
algorithms become impractical for the analysis of high-dimensional
data. Although feature selection methods have been proven to be
somewhat effective in improving cluster quality, they are limited in
discovering clusters that exist in multiple, overlapping subspaces [20].
Recent research has suggested the subspace cluster analysis to
overcome the inherent problem in traditional clustering algorithms and
feature selection methods.

Subspace clustering aims to discover the clusters embedded in
multiple, overlapping subspaces of high-dimensional data. The
early subspace clustering algorithms focus on selecting axis
parallel subspaces which consist of a small number of original
dimensions [14]. However, this kind of subspace does not have
enough flexibility to handle clusters which extend along a mixture of
directions. To find such arbitrarily oriented clusters, many algorithms
have been proposed to discover arbitrarily oriented subspaces [35].
One of the representative methods is LDA, which seeks a subspace
where all clusters are well-separated. To adapt this supervised
subspace learning method for general unlabeled data, Ding and Li
propose unsupervised LDA (ULDA) [11]. By combining linear
LDA and K-means clustering in a coherent framework, it can
simultaneously select the subspace and cluster the data. This
provides the initial configuration of our proposed discriminative star
coordinates.

To support subspace exploration for high-dimensional data, Tatu
et al. [33] propose a semi-automatic approach which first searches
all possible subspaces for a given data set, and then applies a visual
analysis method to explore the obtained subspaces. By organizing the
subspaces as a tree, Yuan et al. [40] present a dimension projection
matrix/tree that enables the user to understand the relationship
between different subspaces. These two methods both separate the
subspace selection and data clustering into two different stages. For
large data, it is quite hard for the user to quickly discover all interesting
structures from all possible subspaces. In contrast, our discriminative
star coordinates start from the result of discriminative analysis, where
subspace searching and data clustering are integrated into one coherent
framework.

3 DISCRIMINATIVE STAR COORDINATES

Given a set of data records X = {x1, · · · ,xn}, xi ∈Rm, which has been
centered and normalized in the preprocessing step, star coordinates



project each mD point xi to a 2D point x′i with a matrix multiplication

x′i = GT ·xi, (1)

where GT = (g1, · · · ,gm), g j ∈ R2 is a set of 2D vectors of weights.
The vector g j is not only the 2D weight of the jth dimension of xi,
but also the jth axis within star coordinates where the origin is the
zero vector. Initially, G can be automatically set with equally radial
alignment [18], here referred to as standard configuration, and then it
can be changed by interactively moving g j.

By generalizing the 2D projection space to l(l < m) dimensional
space, linear dimension reduction takes the same method to project
each mD point data record xi to lD x′i. Rather than interactively
finding the proper G in star coordinates, linear dimension reduction
aims to automatically find an optimal G, which can almost preserve
the structure of relevant patterns and clusters of high-dimensional data
in a low-dimensional space [37]. Thus, linear dimension reduction
provides an appropriate projection matrix to initialize star coordinates.
We denote the projection matrix of star coordinates by Gsc.

As one of the linear dimension reduction methods, linear
discriminative analysis (LDA) [12] aims to find a class-preserving
projection matrix G which can separate different classes of the data
in a low-dimensional space. Hence, using this approach to configure
star coordinates yields discriminative star coordinates (DSC) where
different classes are well-separated in star coordinates. How this
approach works is briefly explained subsequently.

3.1 Linear Discriminant Analysis
Assume X consists of a number of k classes, the corresponding label is
y = {y1, · · · ,yn}, where yi ∈ {1, · · · ,k}. In LDA, three scatter matrices
are defined, namely the total scatter St , the between-cluster scatter Sb,
and the with-in scatter Sw, as follows [12]:

St =
n

∑
i=1

xixT
i (2)

Sb =
k

∑
i=1

ni

n
(µi−µ)(µi−µ)T (3)

Sw =
k

∑
i=1

∑
y j=i

(x j−µi)(x j−µi)
T (4)

where xi ∈ Rm, µ = ∑
n
i=1 xi/n is the global mean of the whole data

records, ni is the number of the records of the ith class, and µi =

∑y j=i x j/ni is the mean of the ith class. It can be easily derived that
St = Sw + Sb. The within-cluster scatter of the projected X can be
expressed as:

S′w =
k

∑
i=1

ni

n
(x′i−µ

′
yi
)(x′i−µ

′
yi
)T

=
k

∑
i=1

GT (xi−µyi)(xi−µyi)
T G

= GT SwG,

which gives an implicit description for the projection matrix G.
Similarly, S′b = GT SbG.

To characterize classes in a low-dimensional space, LDA attempts
to find G that can maximize the between-class scatter S′b and minimize
the within-class scatter S′w. Hence, an optimal transformation G would
maximize trace(S′b) and minimize trace(S′w):

max
G

trace(S′b)
trace(S′w)

=
trace(GT SbG)

trace(GT SwG)
(5)

However, this problem does not have a closed-form global optimal.
Often, it is approximated by [36]

max
G

trace
GT SbG
GT SwG

, (6)

where the columns of G are the eigenvectors of the non-zero
eigenvalues of the following generalized eigenvalue problem

Sbg = λSwg. (7)

If the data consists of k classes, there are k− 1 non-zero eigenvalues,
i.e., G consists of k−1 eigenvectors. When k = 3, G is a 2×m matrix
and can be directly used to configure star coordinates. Figure 1 shows
two examples with 3 classes.

3.2 Configuring 2D Discriminative Star Coordinates
To consistently encode class structures and LDA-extracted subspace
into star coordinates, two visual encoding methods have been
proposed. First, we compute the convex hull of the points from each
class and smooth its contour. The contour is colorized with the color
of its corresponding class. Second, we select any pair of eigenvectors
from G to construct a 2×m matrix Gsc, and each column of this
matrix is used to set the position of the corresponding axis. By default,
we use the eigenvectors of the first two leading eigenvalues to set the
projection matrix Gsc.

Figure 1 shows the comparison of star coordinates configured by
standard configuration [18], PCA [23], and LDA for the Iris data set
with m = 4 and the Wine data set with m = 13, respectively. These
data sets both consist of three classes shown in different colors. It can
be seen that LDA-configured DSC clearly well separates 3 classes,
while there are overlappings between classes in the other two star
coordinates.
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Fig. 1. (left) Standard Configuration, (middle) PCA configuration to
the first two largest eigenvalues, and (right) DSC configured by LDA
obtained eigenvector of the first two largest eigenvalues, for two data
sets: (top) the Iris data set with m=4 dimensions and (bottom) the Wine
data set with m=13 dimensions. Both data sets consist of 3 classes, with
each class being color-coded. It can be seen that the LDA configuration
can best discriminate clusters in both tests.

3.3 Unsupervised Linear Discriminant Analysis
LDA is a supervised dimension reduction method, which requires that
the data has class labels. However, most of the data is unlabeled in
real-world applications [5] and thus DSC cannot only be applied to
visualize general data. A straightforward way to address this problem
is to perform K-means clustering [25] in high-dimensional data space
and then use the obtained labels for LDA. However, direct clustering of
high-dimensional data cannot accurately identify the cluster structure,
because many irrelevant dimensions in high-dimensional data may
confuse clustering algorithms [30]. Accordingly, we introduce
unsupervised LDA (ULDA) [11], which jointly performs K-means
clustering and LDA.

Our main goal is to select proper G in an unsupervised way so
that the cluster structures can be revealed in a low-dimension space.



Hence, the optimization function in ULDA is the same with LDA

max
G,y

trace(GT SbG)

trace(GT SwG)
, (8)

However, this optimization involves two sets of unknown variables: G
and y and is generally hard to solve. We design a two-step approach to
approximate the optimization by alternatively fixing G and y. When
y is fixed, G can be found by a standard LDA procedure, as shown in
Equation 7. When G is fixed, Equation 8 turns out to be

max
y

trace(GT SbG)

trace(GT SwG)
=

trace(GT (St −Sw)G)

trace(GT SwG)

=
trace(GT StG)

trace(GT SwG)
−1 (9)

Since trace(GT StG) is a constant, it becomes the minimization of
trace(GT SwG):

min
y

trace(GT SwG) =
k

∑
i=1

∑
y j=i

GT ||x j−µi||2G (10)

This is equivalent to perform K-means clustering on the space of
GT X. Thus, when G is fixed, y can be obtained by performing
K-means on the projected low-dimensional space GT X. Initially, G is
constructed by PCA. Since K-means is sensitive to the initial centers,
we run K-means multiple times with randomly selected centers and
then choose the one which has the smallest within-cluster variation.
When y is fixed, G can be solved with the standard LDA method
(Equation 7).

In general, unsupervised LDA can be solved with a two-step
iterative algorithm. Specifically, starting with G initialized by PCA,
we alternate between finding y with K-means clustering and searching
G by standard LDA procedure. Hence, the time complexity of
unsupervised LDA is O(mnt) for K-means clustering and O(p2nt) for
LDA computation, where m, n and t are the numbers of dimensions,
points and iterations, respectively. In our experiment, we find out
that this algorithm can achieve convergence in less than 10 iterations.
Figure 2 displays the DSCs of four iterations of visualizing the digits
data set with k = 3. We can see that the separation of cluster structures
is gradually improved as the number of iteration increases. Within four
iterations, these three clusters are well separated in star coordinates.

As configuring 2D DSC with LDA, we use the eigenvectors
obtained from Equation 7 to initialize star coordinates. By default,
the star coordinates are configured by the eigenvectors of the first
two leading eigenvalues. Unlike labeled data visualization, we also
visualize the membership of each point belonging to its corresponding
cluster by setting its opacity based on its distance to its corresponding
cluster center. In Figure 2, each point is visualized in this way.

3.4 Discriminative Star Coordinates Matrix
As pointed out by [7], the eigenvectors of the first two leading
eigenvalues of G cannot reveal all class information when k > 3. To
resolve this issue, one approach is to allow the user to choose any pair
of eigenvectors from G while providing morphing [23] between star
coordinates with different eigenvectors configurations. However, this
method does not give an overview of class structures. Another method
is to use multiple DSCs where each DSC shows a local view of three
classes [10]. By linking these DSCs, the user can get an idea of how
one class interacts with another class, but it is hard to get the complete
spatial relationship among multiple classes.

Inspired by the dimension projection matrix [40], we propose
the discriminative star coordinates matrix (DSCM), where each pair
of eigenvectors is chosen to configure different star coordinates.
Compared to the dimension projection matrix [40], DSCM not only
gives a complete overview of the class structures, but also reveals how
the cluster relates to dimensions. For more detail, see Section 4.2.
When k is very large, we only show the DSCM constructed by

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Fig. 2. The star coordinates of four iterations of using unsupervised
LDA to visualize the digits data set with k = 3. (a)The star coordinates
of the first iteration where three classes are mixed together. (b)
The star coordinates of the second iteration, where three classes
become compact although they still overlap each other. (c,d) The star
coordinates of the third and fourth iterations where three classes are
gradually separated.

the eigenvectors of the first five leading eigenvalues, because the
discriminative ability of the last eigenvectors is small.

Figure 3 shows an example for the synthetic four-Gaussian with
m = 4. The star coordinates configured by the first two leading
eigenvectors e1 and e2 separate the data into three clusters, which
correspond to the green class, the magenta class and the mix of red
and blue classes, respectively. The weights of axes indicate that these
three separated classes have large differences on the axes 1, 3 and
4. The star coordinates configured by the eigenvectors e1 and e3 can
better separate red and blue classes, but do not discriminate green and
magenta classes. Thus, we can conclude that the red and blue classes
are different in axes 1 and 3. It is worth noting that the length of the
second axis is very small in all star coordinates, suggesting that the
second axis is not useful for visual cluster analysis. This is consistent
with the mechanism used in our data generation.

4 TWO-STAGE STRUCTURE EXPLORATION

In the following, we propose a framework for an iterative structure
exploration process, i.e., a pure visual analytics tool for intuitive and
effective visual cluster detection. With a class-preserving projection,
DSC can preserve the inter-class structure present in the original
high-dimensional data. However, it does not characterize the structure
of the data. On the other hand, the star coordinates configured by
PCA [23] can preserve the shape of the data in the low-dimensional
space, though it cannot characterize different classes. We name
the star coordinates with PCA configuration as principal component
star coordinates (PCSC). By default, PCSC is configured by the
eigenvectors of the first two leading eigenvalues of the generalized
eigenvalue problem:

Stg = λg. (11)

where St is the covariance of the data defined in Equation 2.
Figure 4(d) illustrates an example of PCSC, where three ellipses reveal
the major shape variations of three ellipsoids shown in Figure 4(a).

In order to reveal more structures of the data, we propose
a two-stage structure exploration scheme by integrating
LDA/ULDA-supported DSC and PCA-supported PCSC together.
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Fig. 3. A DSCM of the synthetic four-Gaussian data set with m = 4. Note
that the star coordinates at location mi j of the matrix are a reflection of
the star coordinates at location m ji.

In this scheme, (i) the user can easily get an overview of separated
classes from DSC and then (ii) explore the structures of data and each
class with PCSC views.

Figure 4 shows an example of exploring a synthetic three-Gaussian
data set with m = 3 (Figure 4(a)). Starting from the DSC view
(Figure 4(c)), the user learns that the data form three separated
clusters. However, in an effort to separate data from different classes,
the DSC uses a very short axis for the Y-dimension since it has a much
lower discriminative ability than the X and Z dimensions. As a result,
the DSC view is similar to what we would get by projecting the data
onto the X-Z plane. While this is the optimal strategy for separating
these three input ellipsoids, it also hides the structures of data along
the Y-dimension, i.e., the data sampled from the red ellipsoid are
rather projected onto a circle than an ellipse. As a complement to
DSC, the PCSC view (Figure 4(d)) shows three elongated ellipses,
which are consistent with the shapes of the ellipsoids in Figure 4(a).
Moreover, we can also observe that the axis of the Y-dimension is
the longest among the three, which indicates that the data have the
largest variance along the Y-dimension. To allow users to explore
the structure of the data from each class, we further generate the
PCSC views for individual classes, see Figure 4(e,f,g). From these
views, the user can clearly see the elliptical shape of data in red
and green classes. Nevertheless, the records in the blue class are
projected into a circle in Figure 4(f), even though they are sampled
from a nearly flat ellipsoid. This is because the PCSC uses the two
dominant directions for projection and hence hides the structure of the
data along the direction with the smallest eigenvalue, while combining
Figure 4(c) and Figure 4(f) gives us a complete shape structure of the
blue ellipsoid.

Under this two-stage exploration scheme, the user can interactively
explore the structures of the high-dimensional data from three aspects:
class structures, the relationship between class structures and data
dimensions, and the distribution of classes in the original data. These
three goals are achieved by steering the number of clusters in DSC,
manipulating axes in DSC and PCSC, and visualizing the selected
classes and dimensions with linked parallel coordinates.

−10

−5

0

5

10

−5

0

5

10

15

−5

0

5

10

(a)

(b) (c) (d)

(e) (f) (g)

Z

Y X

Z

Y

XZ

Y

ZX

X

X

Z
Y

Y

Y

Z

X

X
Z

Y

Fig. 4. Exploration of the synthetic three-Gaussian data set using the
two-stage scheme. (a) The input data are sampled from three adjacent
but separated Gaussian ellipsoids in 3D space. (b) The star coordinates
with standard configuration mix the three ellipses together. (c) Three
separated but adjacent ellipses in 2D DSC, where the axis length of
the second dimension is the smaller one compared to the other two
dimensions. (d) Three elongated ellipses overlap in 2D PCSC, where
the axes lengths of three dimensions are close. (e,f,g) The 2D PCSCs of
three different Gaussians, where the second dimension is the significant
dimension of all Gaussians.

4.1 Steering Number of Clusters
Given unlabeled data, the user often knows little or nothing about
structures underlying the data. Without any prior knowledge, it is
hard to determine the number of clusters to be used for generating
DSC views. To address this problem, we take an interactive
approach to explore the proper number of clusters and to update
the DSC and PCSC views accordingly. To help the user intuitively
compare the changes of the class structure, we implement the
orthography-preserving morphing [23] approach for interpolating
between two star coordinates with different configurations. It is
particularly useful in learning how the degree of separation between
clusters is changed after setting a different number of clusters.

Figure 5 illustrates an example of exploring the satimage data set
with two different numbers of clusters k = {3,4} . Figure 5 (a)
shows three separated classes and Figure 5 (d,e) reveals four classes in
DSC views, which are configured by eigenvectors (e1,e2) and (e1,e3),
respectively. Comparing Figure 5 (b) with Figure 5 (d), the user
may conclude that the magenta cluster is generated by splitting the
blue cluster in Figure 5 (a). On the other hand, the magenta and red
clusters are close to each other in Figure 5 (e), making it hard to draw
a conclusion. The PCSC views for 3 and 4 clusters shown in Figure 5
(c and f) provide additional information about the data structure. They
show that the majority of the data in the magenta cluster come from
the red cluster in the 3-cluster result, with the rest from both blue and
green clusters.

4.2 Axes Manipulation
In DSC, the axis length represents the discriminative ability of the
corresponding dimension, whereas the axis length of PCSC indicates
the variance of the data along the corresponding dimension. This
difference is clearly illustrated by the axis length of the Y-dimension in
Figure 4(b,c). The axes in the PCSC view also reveal the correlations
between different dimensions. If two axes have similar lengths, the
angle between them reflects their correlation. If the angle is small,
they are positively correlated and thus one of them may be redundant;
if the angle is around 90◦, they are not correlated; otherwise, they are
negatively correlated. According to this guideline, we can see that the
first and third dimensions are highly correlated (Figure 4(f)). This is
consistent with the green ellipsoid shown in Figure 4(a), whose radii
along the first and third dimension are quite close.

To further help the user understand such relationship, scaling and
rotation of axes are provided [18]. Figure 6 illustrates the axis
scaling and rotation operations on the DSC view (Figure 6(a)) of
the satimage data set configured with the number of clusters k = 5
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Fig. 5. Exploration of the satimage data set with two different numbers of clusters (3 and 4). (a,c) The DSC and PCSC views of three clusters,
respectively. (b)The mid-point interpolation when (a) is morphed into (c). (d,e)The DSC views of four clusters, configured by (e1,e2) and (e1,e3),
respectively. (f)The PCSC view of four clusters.

,

and the eigenvectors (e1,e3). In Figure 6(b), shortening the most
discriminative dimension (the 20th dimension) makes the green cluster
mixed with the yellow cluster together while the changes to the red
and magenta classes are relatively small. This indicates that the 20th

dimension plays an important role in discriminating green and blue
clusters. Elongating the axis of the 25th dimension, which is very short
in Figure 6(a), results in large changes to the shapes of all five classes;
see Figure 6(c). It also makes the green cluster overlap with the
remaining four classes. This indicates that the 25th dimension relates
to all classes and has a poor discriminative ability. Figure 6(d) shows
the scaling and rotation on the axis for the 18th dimension, which
leads to the green class highly overlapping with the red and magenta
classes. Again, this suggests that the 18th dimension is important in
distinguishing the green class.

4.3 Linked Parallel Coordinates
Like all dimension reduction methods, star coordinates lose the
original dimensional information, and thus the user cannot get
the concept of data distribution of each class in the original
dimensions. Thus, a linked parallel coordinates view is provided
to reveal relationships between the data distribution in the original
dimensions and classes of interests. Since the axis length represents
the discriminative ability (DSC) or significance (PCSC) of the
corresponding dimension, we allow the user to filter some dimensions
with an axis length threshold and show the remaining dimensions in
a linked parallel coordinates view. The user can also use a lasso to
select some potential outliers in DSC and PCSC views and explore

their distribution of some dimensions with parallel coordinates.
Figure 7 shows an example where a linked parallel coordinates

view is used to show several explored dimensions in Figure 6. Here,
the 2th, 18th, 20th and 24th are selected by filtering the axis length
of Figure 6(a) with a threshold of 0.3 (mean axis length). The 25th

dimension is additionally put together to verify the conclusion drawn
from Figure 6(c). We can observe that the green cluster is well
separated in all dimensions while the other four classes have different
degree of overlap in the first four dimensions. This observation is
consistent with the spatial relationship between five classes shown
in Figure 6(a). Unlike the first four dimensions, the data in the
25th dimension is divided into three subsets, where the first and last
subsets correspond to the green and blue classes, and the middle one
contributes to the red, magenta and yellow classes.

5 APPLICATION AND EVALUATION

We have implemented and tested our prototype visualization system
on a PC with an Intel Xeon E5540 2.53 GHz CPU and 4.0
GB RAM using Matlab. Our system can achieve an interactive
visualization of the data sets shown in Table 1. Since both labeled and
unlabeled data can be visualized with our system, we demonstrate its
effectiveness in two views: LDA-supported labeled data visualization
and ULDA-supported unlabeled data visualization.

5.1 DNA Data
First, we present a case-study on the splice-junction the DNA sequence
data set from the Statlog collection [26]. The data set contains
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Fig. 6. Manipulating the axes of the DSC shown in (a). (a) The DSC
view of the satimage data set (five clusters) configured by (e1,e3). (b)
Shortening the axis of the 20th dimension. (c) Enlarging the axis of
the 25th dimension. (d) Rotating and enlarging the axis of the 18th

dimension. All axis manipulations increase the overlapping among five
clusters, while the relationship between these manipulated axes with
class structures are different.

Table 1. Description of data sets
Data Sets # Record # Dim Data Sets # Record # Dim

three-Gaussian 6348 3 Iris 150 3
four-Gaussian 200 4 Wine 178 13

Digits 7494 16 DNA 3186 180
Bank marketing 4521 17

3186 DNA records and each record consists of 180 binary attributes
where every 3 binary variables represent one nucleotide (A,G,T,C).
According to the types of splice junctions in DNA sequence, this data
has been categorized into three classes: exon/intron (EI), intron/exons
(IE), and Neither. In this case study, we want to see the structure
differences between classes and how each class is related to different
attributes.

We started from the LDA-supported DSC view with three distinct
colors (see Figure 8(a)). In DSC view, we can see three adjacent
classes, where Neither (green) partially overlaps with the IE (blue)
class. The Neither class appears to have a large variance, while
the clusters of the EI (red) and IE (blue) classes are more coherent,
although they both have some outliers shown in other two classes. The
large variance implies that splice junctions of a variety of DNAs are
neither EI or IE. We delved deeper into this hypothesis by examining
the PCSC view shown in Figure 8(b). We found it consistent with
our hypothesis, where the Neither (green) class has a large shape and
highly overlaps with EI (red) and IE (blue) classes. For comparison,
we also show the star coordinates with standard configuration in
Figure 8(c).

Besides revealing class structures, DSC and PCSC views also
indicate how each class relates with attributes. From the DSC view
we can observe that the 90th and 85th dimensions have the largest
discriminative abilities, while the 105th and 93th dimensions are

Fig. 7. Five dimensions selected from the DSC view shown in
Figure 6(a) are visualized with parallel coordinates.

the most significant attributes in the PCSC view. The axes whose
lengths are larger than the double mean axis length in two views are
labeled in the zoomed views of Figure 8(a,b). It is interesting to
find that the 85th, 90th, 93th, 100th, and 105th dimensions appear
in both views. After selecting these 5 attributes, the linked parallel
coordinate views show the distribution of the data per axis of each
class, see Figure 8(d,e,f). By comparing the data distributions of
these three classes, we concluded that the 93th dimension is the most
discriminative attribute in distinguishing the EI (red) class, and the
85th and 90th dimensions have a similar ability in discriminating IE
(blue) class, whereas the distributions of all axes in the Neither (green)
class look regular. As the most significant dimension in the PCSC
view, the 105th dimension contributes fairly to all three classes and
thus does not have a strong discriminative ability like the other four
dimensions.

5.2 Bank Marketing Data
To demonstrate the effectiveness of our system in exploring unlabeled
data, we conducted another user study on the bank marketing data
set. This data set was used to predict whether a client will subscribe
to a term deposit based on 16 continuous (e.g., age) and categorical
(e.g., marital status) attributes in a direct marketing campaign of a
Portuguese bank [28]. Here, our goal is to detect client patterns and to
find out which attributes can better classify clients. Taking the client
depositing behavior as another attribute, this data contains 4521 client
records and 17 dimensions.

Since the number of clusters k is unknown, we tried different ks and
selected the best one by comparing cluster structures in DSC views.
Figure 9(a,b,c) shows the three DSC views generated by using k =
(3,4,5). Comparing these three views, we can see that the clusters in
Figure 9(a,b) both are well separated, while the green and red clusters
in Figure 9(c) appear to highly overlap each other. To verify this
hypothesis, we examined the DSCM views (Figure 9(d)) of 5 clusters
and found that the eigenvectors e2, e3 and e4 further exacerbate the
cluster overlapping where all 5 clusters are mixed together in their
configured DSC views. Thus, we concluded that using 5 clusters to
analyze the data is not appropriate.

The DSC view shown in Figure 9(b) clearly reveals 4 clusters
and thus we do not need to examine its DSCM view. With these 4
clusters, we performed the client pattern analysis by first examining
the PCSC views of the data (left in Figure 9(e)) and four clusters
(right in Figure 9(e)). We can observe that four classes are separated
into two groups, and each group has two adjacent classes. This is
consistent with the spatial relationship between the clusters, as shown
in Figure 9(b). However, each class is not compact in its PCSC view
and seems to have a large variance. To investigate why these clusters
have a large size, we select the top 3 significant dimensions from each
PCSC view shown in Figure 9(e). Interestingly, the top 3 significant
dimensions in the PCSC view of the whole data are also the most
discriminative 3 dimensions shown in Figure 9(b). After removing the
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Fig. 8. Experiments on the DNA data set: (a)The DSC view of three clusters, where the axes are zoomed in to clearly show the axes lengths.
(b)The PCSC view of three clusters, which has been zoomed out two times to display all clusters. Like (a), the axes are also zoomed in for showing
the detail. (c) The star coordinates with standard configuration. (d,e,f)The linked parallel coordinates show the distributions of three classes with
selected five dimensions.

,

duplicate dimensions, 7 dimensions are selected, which correspond
to 7 attributes: job, martial, education, housing, loan, contact
communication type, and depositing. Since all these 7 attributes are
categorical variables, we concluded that the continuous attributes,
such as age and averaged yearly balance, cannot characterize different
classes of clients in this data set. This discovery is a little different
from traditional categorization methods where age and average yearly
balance are often used to classify clients [24].

With these selected 7 dimensions, Figure 9(f) shows the parallel
coordinates plots of four classes. We can clearly see that the records
can be separated into two groups: red and green classes, blue and
magenta classes by the binary variable of housing. In each group,
two classes can be distinguished by whether using the telephone
communication type or not. This is an unexpected discovery, which
was not reported by the state-of-the-art machine learning algorithms
that analyzed the same data set [28]. A further verification of this
discovery with domain scientists is needed. On the other hand, we can
see that all clients in the blue class are not divorced and most of the
clients in the red class are not single, while the martial status cannot be
used to differentiate green and magenta classes. Except for the three
attributes of housing, contact way and martial status, all categories of
the remaining attributes contribute to each class and we assume this is
why there is a large variation within each class.

6 DISCUSSION

Showing the projection of star coordinates is a special case of linear
dimension reduction. Our LDA-configured DSC can clearly separate
different clusters of the data in 2D space. Since K-means and LDA
have the same optimization objective, i.e, minimizing the within-class
scatter matrix and maximizing the between-class scatter matrix [11],
they are coherently combined into ULDA, which facilitates our DSC
to reveal the cluster structures in unlabeled data. As shown in Figure 2,
ULDA is numerically stable and can achieve convergence within a few
iterations.

Compared to previous interactive subspace exploration
methods [33, 40], LDA or ULDA-supported DSC provides a
good starting point for cluster exploration. Combing DSC and PCSC

can give the user a complete view of how the dimensions relate
with the cluster structures. Note that the difference between our
two-stage exploration scheme and the two-stage dimension reduction
(LDA+PCA) method [7] is that the latter one performs PCA on the
LDA projection rather than on the original data and thus cannot
provide the complete structure of classes to the user.

Finally, we would like to mention that our DSC can also be used for
initializing orthographic star coordinates (OSC) [23]. However, we
do not adopt the orthography-preserving interaction in our exploration
scheme, because non-manipulated axes have to be adjusted to preserve
the orthography. This will hinder the user to understand how the
manipulated axis affects the corresponding class structures.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose the discriminative star coordinates which
can clearly characterize different clusters in 2D space. We extend
our concepts to a star coordinates matrix in order to simultaneously
reveal more than 3 clusters implied in the data. To facilitate the cluster
structure exploration, a two-stage exploration scheme is presented,
where DSC and PCSC are combined together to help the user
explore class structures and the relationship between dimensions and
clusters. Equipped with a set of structure-aware interactions, this
exploration scheme has proven to be effective in high-dimensional
data exploration.

Our approach has still some limitations, which we want to address
in the future. First, the current Matlab implementation cannot support
the exploration of very large data like millions of data records. Porting
the LDA and ULDA computation and point rendering onto GPU is an
ongoing work. Second, linear dimension reduction methods cannot
handle some complex data [16] whose low-dimension projection
cannot be explained by linear methods. Incorporating kernel methods
to DSC is part of future work. Finally, we plan to test the effectiveness
of 3D discriminative star coordinates and perform a formal user study
to validate our approach in the future.
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Fig. 9. Experiments on the bank marketing data set. (a,b,c) shows the DSC views with k 3,4,5, respectively, where the clusters in (a,b) both are
well separated. (d) The DSCM view of the 5 clusters where the strong overlapping between classes makes us conclude that 5 clusters are not
appropriate for client pattern analysis. (e) The 5 PCSC views (data and four classes) of the DSC view in (b). (f) The parallel coordinates views of
four classes with the selected 7 dimensions.
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