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Reflected Vector Fields for Finding FTLE Ridges

Maik Schulze, Christian Rössl, Dirk J. Lehmann, Holger Theisel

Abstract— The computation of FTLE fields and the ridges therein can be interpreted as a sampling problem: at discrete sample
points, the flow map is computed by numerical integration. The quality of FTLE ridges strongly depends on the sampling density, i.e.,
on the number and distribution of samples for the flow map computation. For long integration times, FTLE ridges tend to become
very sharp, and they may get close to each other. Thus, an extremely dense sampling is necessary to find the ridges. We introduce
a novel approach to computing FTLE ridges that does not require high sampling densities. We define a modification of the original
velocity field – called the reflected vector field – such that integration in this field gives particles converging to the ridges. This way,
accuracy is not dominated by sampling density any more but instead by integration time. We compare the approach with sampling
based approaches and show its usefulness especially for extremely long integration times and sharp ridges.

Index Terms—Flow Visualization, FTLE, LCS

1 INTRODUCTION

Lagrangian Coherent Structures (LCS) are prominent and promis-
ing approaches to extract and visualize the global behavior of time-
dependent flow fields. Among the various alternatives that have been
proposed in recent years, Finite Time Lyapunov Exponents (FTLE)
are one of the most common representatives of LCS.

Ridges in FTLE fields are known to depict separating structures
in the flow. Their reliable computation is challenging both in terms
of accuracy and performance. This makes the computation of FTLE
fields and ridges an interesting and active area of research, which has
attracted researchers in Flow Visualization and other communities for
some years.

Existing approaches for FTLE computation can be interpreted as a
sampling problem. The flow map is computed on a number of discrete
sample points. Its gradient is estimated at the samples, either by finite
differences or by a suitable integration of the Jacobian of the velocity
field. This way the accuracy of FTLE structures depends mainly on the
density of the flow map samples. This motivated various approaches
to adaptive sampling as well as to using temporal coherence for the
samples in adjacent time steps.

There are two reasons why the sampling problem for FTLE com-
putation is challenging. Firstly, increasing the number of samples is
expensive, since every new sample requires the numerical integration
of a path line. Secondly, FTLE ridges (i.e., the structures of main
interest) tend to become very sharp and located close to each other
with increasing integration time, see Kuhn et al. [12]. This means that
for longer integration times the sampling density that is necessary to
capture the FTLE ridges increases dramatically. Although FTLE orig-
inally was suggested for rather short integration times only, see Haller
and Yuan [10], the application to very long integration times is desired
because important properties are better fulfilled:

In fact, the longer the integration time is, the more the ridges are
material separation structures, see Shadden et al. [27]. However, the
strongly increasing sampling density required for increasingly long in-
tegration times is a fundamental limitation in computing FTLE ridges
for extremely large integration times.

In this paper, we introduce a new approach to compute FTLE ridges
that does not depend on the sampling density any more. For this, we
introduce the concept of reflected vector fields and show that when
integrating a suitable combination of original and reflected fields, par-
ticles converge to points on the ridge with increasing integration time.
With this, we obtain FTLE ridges not by densely sampling the flow
map but by integrating a low number of particles and connecting their
end points. This way, the accuracy of the method is not dominated
by the sampling density but by the integration time. This makes our

techniques particularly useful for extremely long integration times and
sharp and dense ridge structures.

The paper is organized as follows: Section 2 provides background
and summarizes related work. Section 3 illustrates the main idea for a
simple 1D example. Section 4 takes this idea to 2D and introduces the
concept of reflected vector fields and shows basic properties. Based
on this, we describe our algorithm in Section 5 and show results in
Section 6. We discuss our approach in Section 7 and conclude with
Section 8.

2 BACKGROUND AND RELATED WORK

The observation of few particle trajectories provides a simple and in-
tuitive tool for the analysis of time-dependent flows. A more abstract
analysis that leads to a more compact representation of global flow
behavior is the extraction of features such as flow transport barriers.
These are curves in 2D or surfaces in 3D that are never intersected
by any path line for given time interval, i.e., they separate regions of
different flow behavior. A general definition of such flow features is
given by Lagrangian Coherent Structures (LCS) [10, 7].

The probably most common approach to computing LCS is based
on the finite-time Lyapunov Exponent (FTLE): Given is an unsteady
vector field v(x, t). Then its flow map φ τ

t (x) = φ(x, t,τ) maps a par-
ticle seeded at (x, t) to its destination after a path line integration of v
over a time interval [t, t+τ] (we assume τ > 0). The (spatial) flow map
gradient ∇φ(x, t,τ) = ∂

∂x φ(x, t,τ) encodes the separation of particles
seeded near (x, t), and FTLE is defined in terms of its largest singular
value, i.e., the largest magnitude of separation. Commonly, FTLE is
defined as the scalar value

FTLE(x, t,τ) =
1
τ

ln
√

λmax(∇T ∇) ,

where λmax denotes the maximum of the real, positive eigenvalues
of the Cauchy-Green tensor ∇T ∇ with ∇ = ∇φ(x, t,τ). A numerical
computation of FTLE is straightforward for a finite-difference approx-
imation of the flow map gradient, see Haller and Yuan [10, 5].

This is a very efficient and probably the most wide-spread method
for computing FTLE. For a comparison of alternative methods see,
e.g., Kuhn et al. [12].

The FTLE fields encode how much particles that are seeded in a
small neighborhood separate after a path line integration. Therefore
ridges1 of these fields separate regions of different flow behavior:
there are the structures that we are interested in. Most of the tech-
niques used for FTLE ridge extraction come from ridge extractors in
medical imaging. We mention local conditions obtained by relaxing
conditions of extremal structures, see Eberly et al. [2], Lindeberg [15],
and also Peikert and Sadlo [18]), topological/watershed approaches by
Sahner et al. [24], second derivative ridges by Lipinski and Mohseni

1The general term crease structures includes valleys with similar properties.
In this paper we only use the term ridge.



[16], or definitions based on extremal curvature structures, see Ohtake
et al. [17]. The extraction of ridge surfaces in 3D fields is examined
by Peikert and Sadlo [18] and Schultz et al. [26]. A discussion and
comparison of ridge concepts for the visualization of LCS is given by
Schindler et al. [25]. We particularly mention the approach by Kindl-
mann et al. [11], which obtains ridges by particles integration in the
underlying scalar field. This can also be used for FTLE ridges. How-
ever, we note that this is different to our method, because the FTLE
field has to be computed by sampling prior to ridge extraction.

FTLE ridges have been used for a variety of applications by Lekien
et al. [14], Haller [6], Shadden et al. [28], and Weldon et al. [32].
Shadden et al. [27] show that ridges of FTLE are approximate mate-
rial structures, i.e., they converge to material structures for increasing
integration times. This fact was used by Sadlo and Weiskopf in [23]
to extract topology-like structures to accelerate the FTLE computation
in 2D flows. A similar objective is pursued by Lipinski and Mohseni
in [16] with a ridge tracking that is based on particle tracking. Since
FTLE ridges are approximate but not perfect material structures, this
induces a small error which makes the approach not applicable for
an exact tracking of sharp ridges. The smallest FTLE values are ad-
ditionally explored by Haller and Sapsis in [9]. Furthermore, differ-
ent approaches to increasing performance, accuracy, and usefulness
of FTLE as a visualization and visual analytics tool have been pro-
posed [21, 4, 3, 20, 22, 13, 1]. Haller and Beron-Vera [8] show that
transport barriers are shadowed by certain minimal geodesics. The
barriers are obtained by a filtering of strainlines and shearlines and ad-
vection of the filtered segments. Strainlines and shearlines are in turn
computed as the solutions of ordinary differential equations.

Ridges can become extremely sharp for long integration times. This
fact is demonstrated in a recent benchmark on accuracy of FTLE com-
putation by Kuhn et al. [12].

The results in this work reveal the limits of standard ridge extrac-
tion, e.g., from image analysis, for FTLE ridges in practice: the re-
quired sampling resolutions become extremely high. On the other
hand, for long integration times there is less flux across FTLE ridges,
which makes them a better approximation of LCS, see Shadden et
al. [27]. Thus, FTLE for long integration times and sharp ridges are
interesting in practice.

Üffinger et al. [30] generalize the work by Sadlo and Weiskopf [23]
by finding separating structures based on an intersection of ridges in
forward and backward FTLE. These structures are used (with a certain
offset) as seed structures for generalized streak surfaces. Although the
integration from the separating structures is similar to our approach,
the construction of these structures differs fundamentally from our ap-
proach. In particular, [23] still rely on a high sampling for finding the
separating structures.

3 A SIMPLE EXAMPLE

We explain the main idea of our approach by means of a very simple
example: the 1D vector field

v(x, t) = x(1− x)(1+ x) ,

which is of such simple structure that a closed form solution for the
flow map (and similarly for FTLE) exists:

φ
τ
t (x) =

x√
x2 + e−2τ (1− x2)

(1)

The ridge of forward FTLE is just the location x = 0. Although the
ridge is known, we emulate a standard ridge extraction technique for
an unknown ridge in order to estimate its accuracy. We restrict our-
selves to the domain x ∈ [−1,1]. In order to get the ridge, we sample
the domain and compute the flow map from the sample points. This
gives information about the location of the ridge at an accuracy of the
sampling density. We assume an adaptive sampling by binary parti-
tion of sampling intervals. Then for a desired accuracy of ε > 0 for
the location of the ridge, we need at least log2

1
ε

flow map samples.
Figure 1 illustrates this for ε = 1

4 . Although the number of samples

ε

t

x

τ

1

0

−1

Fig. 1. Traditional adaptive ridge sampling by recursive bisection. Start-
ing from an interval size 1.6, five samples are required to ensure an error
bound of ε = 1

4 (bisection intervals shown left).

t

x

τ

1

−1

0

Fig. 2. Ridge sampling by backward integration. The sample points tend
to converge quickly towards the ridge.

increases only a logarithmically with linearly increasing accuracy, this
is a serious limitation because in practice ridges are not computed in
1D but in 2D or 3D domains.

In our simple example, the alternative to sampling-based forward
FTLE computation is backward integration. Instead of sampling the
domain at the time t = 0, we apply a backward integration from the
time τ to 0. In our example we use eight equidistant samples. Fig-
ure 2 illustrates this. In this example we integrate backwards, i.e., we
compute φ−τ

τ (x) for x ∈ {± 9
10 ,±

3
4 ,±

1
2 ,±

1
4}. With this, we compute

the ridge location together with an estimation of its accuracy by back-
ward integrating a few path lines. Doing so, accuracy is dominated
not by the sampling density but by integration time. We see that all
lines end at time t = 0 very close to the ridge. (In fact, this holds for
any line except those seeded at x = ±1.) With (1) given, it is easy
to see that the distance between backward integrated particles and the
ridge decreases exponentially in τ . This is independent of the starting
point. This means that for long integration times τ , we get extremely
accurate ridge locations just by backward integration of few particles.
Moreover, the difference between two end points at t = 0 is a measure
of how accurate the location of the found ridge is.

Unfortunately, this simple approach of forward FTLE ridge extrac-
tion by backward integration does not directly carry over from 1D to
2D vector fields. The reason is that for 1D vector fields, backward inte-
gration of a diverging area yields a converging area, i.e., an area where
path lines converge to each other under backward integration. In 2D
flows, we are mainly interested in LCS occurring in hyperbolic re-
gions. Unfortunately, the backward integration of a hyperbolic region
gives a hyperbolic region as well. This means that a simple backward
integration does generally not converge. In the following we introduce
the concept of reflected fields that provides the extension of the illus-
trated idea to 2D flows: these reflected vector fields are constructed
such that backward integration in a hyperbolic region gives an attract-
ing region.

4 REFLECTED VECTOR FIELDS

There can be several flow phenomena causing LCS. Here we are inter-
ested in hyperbolic regions, which can be interpreted as saddle points



H

(x, t)

vṽr

r

Fig. 3. ṽr is obtained by reflecting v about a line H, which is defined by
its normal vector r. The reflecting field r is determined locally at (x, t)
from the eigenvectors of the Jacobian.

moving over time. Due to the unsteadiness, the separation does not
occur at the saddle point but at a point in its neighborhood. The loca-
tion of this point generally cannot be computed by a local analysis of
v. In order to find this point, we introduce a modification w of v such
that its backward integration stably converges to the separating point.

The main idea is to reflect the vectors of 2D unsteady vector field
v(x, t) about a certain line or plane. We assume a local coordinate
system with origin x. Any reflection plane H that contains the origin
can be characterized by a normal vector r 6= 0 as H = {y |yTr = 0}. A
reflection about H can be written as a linear operator

Hr = I − 2
rrT

rTr
, (2)

where I is the identity. Hr is the well-known Householder reflector, in
our case a matrix Hr ∈ IR2×2. With the local reflections being charac-
terized by a vector, we can define the normal field r(x, t) as a vector
field. (We omit the space-time location (x, t) in the following and write
r, v, etc. for short.) Assume r is given, then we can define:

Definition 1 Given is a vector field v and a non-vanishing normal
vector field r. The reflected vector field ṽr of v with the normal field r
is defined as

ṽr = Hr v . (3)

Figure 3 gives an illustration. Reflected vector fields have the follow-
ing properties:

• reproduction of critical points: ṽr = 0⇔ v = 0.

• scale independence of r: ṽr = ṽsr for any s 6= 0.

Both properties can be easily verified from the definition of Hr. Note
that scale independence includes orientation independence: ṽr does
not depend on the orientation of r. This qualifies eigenvector fields to
act as normal fields.

Since we are interested in transforming a hyperbolic region of v
into a parabolic region in ṽr, we study the Jacobian of ṽr. Let J be
the Jacobian of v. Then we get the Jacobian J̃r of ṽr by differentiating
both sides of (3). From this we get the following property:

v = 0 ⇒ detJ =−det J̃r. (4)

The proof of (4) is a straightforward computation. It means that for 2D
vector fields, a hyperbolic critical point (i.e, a saddle) is transformed to
a parabolic critical points (i.e, a source, sink, or center) in ṽr. Figure 4
gives an illustration of a saddle turning into a source after reflection:
this is what we intend. Figure 5 shows the inflow and outflow near a
saddle for different reflection axes.

Our goal is to find a normal field r such that the reflected field of a
saddle is a source node. For this, we formulate r in terms of the eigen-
vectors of J: let λ1,λ2 be the eigenvalues of J, we assume that they are
real and λ1 ≤ λ2. Furthermore, let e1,e2 be the corresponding eigen-
vectors in J, and let g1,g2 be the corresponding eigenvectors in JT.
(J and JT have the same eigenvalues but generally different eigenvec-
tors). Then we define r to be perpendicular to e2 by setting r = g1. We

r

Fig. 4. Reflection near saddle with λ1 < 0 < λ2. The reflection of the
original vector field v (left) about the axis spanned by the eigenvector
e2 ⊥ r yields a source for the reflected field ṽr (right).

Fig. 6. Linearly moving saddle: while path lines of v show a hyperbolic
behavior (i.e., diverge from each other in both forward and backward
direction), the backward integration of w (green lines) converges stably
towards the moving separation point.

are mainly interested in LCS occurring in hyperbolic regions, where
no rotation is present. In such regions we have λ1 ≤ 0≤ λ2. For v = 0,
J̃g1 has the eigenvalues 0 ≤ −λ1,λ2, describing a parabolic diverging
region. This means that a backward integration of ṽg1 gives a converg-
ing behavior of particles. Figure 4 illustrates this.

Up to now, our concept of vector field reflection transforms a steady
saddle into steady source. For unsteady flows, we have to incorporate
the moving of the saddle over time. For this, we consider the field

f =
1

det(vx,vy)

(
det(vy,vt)

det(vt ,vx)

)
, (5)

which corresponds to the feature flow field to track critical points
over time in unsteady 2D vector fields [29]. We have to remove the
saddle movement before applying the reflection: we define the time-
dependent reflected vector field w as

w = Hg1 h+ f. (6)

with h = v− f. Note that w is only defined in regions where v is hyper-
bolic, i.e., where det(vx,vy) < 0. Also note that w is computed from
v only by local operations. In particular, we need v and its Jacobian
only to compute w locally.

We illustrate the concept of time-dependent reflected vector fields
for a simple example: the field

v(x,y, t) =

(
−(x− t ud)

y− t vd

)
, (7)

which describes a saddle moving with constant speed (ud ,vd)
T over

time. Figure 6 illustrates this for (ud ,vd)
T = (1,0)T . The LIC plane

shows v at t = 0, and the blue line (t ud , t vd) denotes the path of the
saddle over time. The moving separating point is located along the
line (−ud + t ud ,vd + t vd)

T , which is in this case the only straight
path line of v. It is shown in the figure by integrating the red curves in
v. Note that this line has a hyperbolic behavior: the red lines diverge
from it both in forward and in backward direction. The alternative
to computing the moving separating point is to backward integrate w.
Here, the seed points are the green points in the upper left (which are



r
r

r r r r

Fig. 5. Inflow and outflow near a saddle in the vector field v (left) and reflected fields ṽr for different constant reflections r. The reflection vector r
and the associated reflection axis (dotted) are turned counter clockwise. (All figures show the original directions of eigenvectors.)

actually rather far away from the line). The backward integration of w
(green lines) converges stably to the desired separation line in space-
time.

5 ALGORITHM

Based on the idea of reflected vector fields, we propose the following
algorithms for the extraction of FTLE ridges. The core contribution
is the first step of constructing seed structures. The subsequent ridge
tracking starting from a seed is essentially a 1D curve sampling with
an adaptive parametrization, similar to a 1D integration.

5.1 Generation of seed curves
Given is the vector field v(x, t) over a spatial domain D and the inte-
gration time τ . We pick a discrete set of particle samples in D at time
τ and perform a backward integration of the time-dependent reflected
field w as defined in (6). As we are interested in hyperbolic regions,
we seed particles only in these regions at time τ . Furthermore, we stop
integration for particles that would leave hyperbolic regions, i.e., some
particles may not reach the destination at t = 0. The trajectories of the
particles converge rapidly to curves that end on ridges. In fact, the be-
havior is similar to the simple 1D example (see Figure 2) as shown for
instance in Figures 6, 9 (top left) or 11 (bottom). For this reason, there
is no need for a dense initial particle set. In particular, particle den-
sity does not correlate with “sharpness” or distance of ridges! This is
demonstrated in Figure 11 (bottom). We remark that in practice more
samples increase the chance tracking the ridge accurately over a long
time (see below). However, the number of samples is typically orders
of magnitude lower than for traditional ridge computation.

5.2 Seed curve selection
Backward integration of w from samples gives a potentially large set of
candidate seed curves, which end near a ridge for t = 0. As the curves
converge to trajectories of separation points, their end points form tight
clusters in D (see, e.g., Figure 9). We perform an outlier filtering by
discarding the 30% of points with largest norm ‖J‖F . We then use
a standard mean-shift clustering algorithm to identify clusters within
the remaining points. Then small clusters consisting of only few points
are discarded. From each remaining cluster we pick the one with the
shortest particle trajectory: this trajectory is selected as seed curve
for this cluster. This process is motivated by the fact that points that
have not converged as well as other points during integration exhibit
stronger saddle-like behavior in their local neighborhood. The outlier
rejection step significantly eases the clustering step as it increases the
ratio of inter-cluster to intra-cluster distance. Figure 7 illustrates this
setup after backward integration in the reflected field: black points are
discarded, blue and yellow points are then clustered. End points of
selected seed curves are depicted green.

Note that the clusters and also the trajectory bundles are very tight
(e.g., a cluster radius in the order of 10−5 for Figure 9). Still, we aim
at getting as close as possible to the true separation point to ensure
accurate ridge tracking. Our experiments show that the above filtering
and selection heuristic tend to find very good seed curves.

5.3 Ridge tracking
Each seed curve represents an approximation to the trajectory of a sep-
arating point, and we use these curves for ridge tracking. The seed

Fig. 7. Illustration of seed curve selection setup after backward integra-
tion in the time-dependent reflected field w. Outliers (black) are removed
and clusters (yellow and blue) are computed. For each cluster a candi-
date is selected by minimal arc length of integral curve in w (green).

curves are given as spline curves s(t) from the numerical integrator. (In
our implementation, we a fourth order Runge-Kutta scheme and repre-
sent trajectories as cubic Hermite splines.) The basic idea of the ridge
tracking is simple: Starting from t = 0 we evaluate the seed curve and
determine the vector field Jacobian J(s(t), t) for increasing t. As we
are in a hyperbolic region we obtain real eigenvalues λ1 < 0 < λ2 and
associated eigenvectors e1,2. From each curve point we take a small
offset in direction of e2 to pick an offset point s′ := s(t)+ γ e2. Back-
ward integration of the vector field v starting from (s′, t) yields a point
on the ridge at t = 0. This way, we can sample the ridge in an interval
[0, tmax], where the limit tmax ≤ τ must ensure that s(t) is still close to
the trajectory of the separating point. In practice, we limit the devia-
tion from other seed curves in the same cluster/trajectory bundle. Note
that a consistent orientation of the eigenvector e2 is required along s(t).
This can be enforced easily, e.g., by taking the previous/nearest evalu-
ated e2 as reference.

The parameter γ 6= 0 is a small signed number. Its sign determines,
which direction of the ridge is followed. Its magnitude trades accuracy
(|γ| small) versus total length of the extracted ridge (|γ| large). For our
experiments we use |γ| ∈

[
d ·10−2,d ·10−3 ], where d measures the

extent of the domain as length of the bounding box diagonal. The
magnitude of γ is the only “critical” parameter of our approach in a
sense that firstly, it should be selected depending on the input data v,
and secondly, for a “wrong” choice ridges become inaccurate or are
partially lost. We currently cannot give a reliable automatic and or
even time-dependent selection (see also discussion in Section 7).

Based on the above, we can now assume the ridge is given as a
curve c, where each curve point c(t) is evaluated as described above.
A naı̈ve – e.g., uniform in t – sampling of c(t) will not yield satisfac-
tory results in practice because the parametrizations of s and c differ
significantly. This means that the curves differ significantly in speed,
or more formally the ratio

|| d
dt s(t)‖

/
‖ d

dt c(t)‖

generally ranges from extremely large to extremely small with consid-
erable variation within the time interval of interest. This is not surpris-
ing as the evaluation of the ridge is expected to show an exponential
behavior. We propose a simple and effective solution for this 1D sam-
pling problem. Ultimately, we are interested in the arc length of c,



Fig. 8. Ridges of spiral focus with parameter p0 = 16.

i.e., for a prescribed distance ∆s measured in D we determine the time
difference ∆t such that

‖c(t +∆t)− c(t)‖ ≈ ∆s .

We achieve this by growing ∆t followed by a recursive bisection in ∆t
until the above condition is satisfied within some error bound. (We
ensure a maximum relative error of ∆s/100.) This way we can sample
the ridge as a polyline with approximately uniform segments of length
∆s.

Based on this we adapt the local segment length ∆s to the shape
of the ridge. Our goal is to match the “true” speed of the ridge with
the approximate speed ∆s/∆t. We compute a local segment length ∆

that satisfies this property approximately as follows: For each ridge
segment we start with ∆ = ∆s. We estimate d

dt c(t) using a finite-
difference for a small time interval (δ t = 10−9). Then we adapt (grow
or shrink) ∆ iteratively until the ratio ρ = ‖ d

dt c(t)‖/∆ is bounded such
that max{ρ,1/ρ}< 3

2 . In addition, we bound the segment length and
stop adaptation whenever ∆ < ∆s/10 or ∆ > 5

4 ∆s. The given error
bounds and thresholds served our needs for all examples, and their
choice is uncritical. We do not see requirement for second order adap-
tation incorporating curvature or the ridge.

6 RESULTS

We apply our method to synthetic and measured data sets with differ-
ent properties. We visualize extracted ridges as black lines that are su-
perimposed on a forward-FTLE texture using the color map proposed
by Garth et al. [4].

For all our experiments we use an adaptive fourth-order Runge-
Kutta integrator. The analytic flow fields and their Jacobian are eval-
uated “exactly” from formulas, sampled data is reconstructed by tri-
cubic C1 interpolation.

Spiral Focus
We apply our method to the spiral focus vector field proposed as an
FTLE benchmark by Kuhn et al. [12]. It is characterized by a focus
sink in the shape of Fermat’s spiral. The field parameter p0 steers
sharpness and closeness of ridges. We use p0 = 16 and an integration
time τ = 30, this is a nontrivial choice (see [12]). Figure 8 shows the
ridges extracted by our method. We obtain two ridge line pairs spi-
raling inward and meeting at the center. While the underlying FTLE
texture shows the general separation behavior and shows consistence
with the ridge lines, it is difficult to see the small valley line between
pairs of ridges. The closeup on the right shows the bottom right cor-
ner of the data set. Bright valley lines are visible between adjacent
ridges. The green dots show the cluster representative used for back-
ward pathline integration. Note that we do not check for different
representatives on the same ridge. Indeed, here our algorithm extracts
ridge lines multiple times such that the visualization shows lines that
are on top of each other. The fact that this is hardly visible indicates
high accuracy of ridge detection independent of the particular seed.

Double Gyre
We also apply our method to the well-known double gyre vector field
that was symmetrically extended such that we have the separating

Fig. 10. Perturbed pendulum is a chaotic dynamical system. This phase
portrait exhibits complex FTLE ridges. Our method stably extracts four
black ridges for long integration times τ = {5,15,20,25}.

point away from the boundary. The primary feature within the flow is a
saddle that moves periodically on the x-axis near the center (1,0) cre-
ating a sinusoidal trajectory in space-time. We show our results in Fig-
ure 11 for different integration times τ = {10,15,20,25,30,35,40},
i.e., for one to four periods. We analyze the double gyre in two com-
partments [0,2]× [−1,1] and can observe the black ridge line emanat-
ing from the saddle near the center. Due to the space-filling nature of
ridges in this flow we show a close-up of the extracted ridges for the
largest integration times. The top left image shows the space-time tra-
jectories of backward-integrated reflection lines and their seed points.
This gives a good impression of cluster tightness.

Perturbed Pendulum

Figure 10 shows the phase plane of a perturbed pendulum. The chaotic
behavior of this dynamical system becomes visible with FTLE. We
show our results for different integration times τ = {5,15,20,25}.
Reflection lines integrated from the grid with dimension 20×20 con-
verge rapidly to the source in w at t = 0 (shown as green dots). Back-
ward pathline integration off the two curves results in four black ridge
curves. Our method extracts the complex ridge geometry stably for
large integration times such as τ = 25. A close-up of the ridges near
the right reflection field source is shown in the bottom right image.

PIV Cylinder

Figure 11 shows our results for the flow around a cylinder. The flow
was measured using Particle Image Velocimetry and is defined on a
regular grid with the dimension 560×160×61 and a time span of t ∈
[0,480]. The flow is fully developed at initial time t = 0 and contains
the Kárman vortex street phenomenon. Vortices of opposite rotation
appear behind the circular obstacle.

The top left image shows ridges extracted by our method for τ =
150 in black. Reflection lines are seeded on a 300×100 grid and con-
verge to multiple reflection field sources during backward integration.
The clusters of the converged points are depicted by yellow dots with
selected cluster representatives of green color. The integrated ridges
become shorter with growing distance from the cylinder. This effect
is consistent with the FTLE field, which becomes increasingly smooth
in these regions.

The bottom left image shows the space-time trajectories of reflec-
tion lines of each cluster in distinct colors. A much coarser grid of
dimension 50×16 is used for the bottom right figure. Despite a highly
reduced number of seed points in the reflection field our method is able
to extract smooth ridges.

The top right image in Figure 11 shows ridges for an increased in-
tegration time of τ = 250 from a dense seed grid. Smaller clusters size



Fig. 9. Ridges of double gyre for different integration times τ. The top left image shows space-time trajectories in the reflected field. For τ = 35 and
τ = 40 closeups on the separating saddle point can been.

than in the experiment to the left with τ = 150 indicate an increasing
precision of backward integration in the reflection field.

Performance

The performance sampling-based FTLE ridge extraction methods cor-
relates with the smoothness of the results. This is not the case for our
method. However, in order to obtain reliable results it is necessary to
provide a reasonable seed grid for particle advection in the reflected
field. Additionally, the obtained separating point trajectories are seed
curves for pathline integration to obtain ridge curves. The quality of
the ridge curves depends on the sampling density during this phase,
leading to a tradeoff between quality and computation time. Signifi-
cant portions of our algorithm can be run in parallel: the initial particle
advection based on numerical integration is easily parallelized. We ob-
serve that filtering and clustering requires only milliseconds on in all
experiments. Finally, ridge sampling off cluster candidates can be run
in parallel as well.

We provide timings of these phases for different data sets that have
been discussed in this section in Table 1. The last three columns show
timings for the different stages of the algorithm: integration in w for
seed generation, the selection of the seed curves (including cluster-
ing), and tracking (i.e., mainly integration in v). The measurements
were taken on a desktop computer with an Intel i7-2600K processor.
The timings reveal that the run-time of our algorithm is governed by
the numerical integration. Note that the cost for tracking depends on
the prescribed target segment length ∆s, which is chosen rather small
(please zoom into the pictures).

Convergence and numerical stability

The cylinder data set is a challenge for any ridge extraction method: it
exhibits a complex flow that is given as discrete samples. We applied
our method to the cylinder data (see Figure 11) and obtain smooth
ridges that are consistent with FTLE textures. (We do not have a better
ground truth.) Repeating the experiment for a low resolution sampling
reveals that the smoothness of ridges (and mostly also their length and
location) does not correlate with the resolution of the particle seed
grid. This is an advantage over existing methods such as subdivision-
based image techniques for ridge tracking.

data set τ grid integration selection tracking

cylinder 150 300×100 269.4s 0.11s 135.5s
cylinder 150 50× 16 6.5s 0.1ms 121.6s
double gyre 10 100×100 2.5s 0.2ms 4.5s
double gyre 45 100×100 5.7s 0.2ms 57.3s
pendulum 25 20× 20 0.2s 0.1ms 162.8s

Table 1. Timings. For each data set the table shows integration time
τ, seed grid resolution, and the computation times for each phase of
our algorithm: backward integration in w, candidate selection, and ridge
sampling.

Fig. 12. Flow around a circular cylinder over integration time τ = 150.
Ridges are integrated for every point integrated backwards in w.

Figure 12 shows a close-up of the flow around the cylinder for
τ = 150, which is the same setup as in Figure 11 (top left). It con-
tains all clustered points after integration in w towards t = 0. In this
case, no candidate selection as described in Section 5.2 has been per-
formed. Instead, ridges were integrated from all points and superim-
posed. The backward-sloping ridge below the cylinder, which was
missed before, now clearly becomes visible. The reason for this dif-
ference is the suboptimal choice of cluster representative selected in
Figure 11 (top left). Nevertheless, backward integration in w yields
the “correct” separation point trajectory, but it requires intricate selec-
tion for non-perfectly converged clusters. This issue has a stronger
effect when using our method with short integration times making our



Fig. 11. Results for the PIV-measured flow around a cylinder for τ = 150 (top left) and τ = 250 (top right). FTLE ridges are depicted as black
lines. Yellow dots indicate cluster points from integration in the reflection field and their representatives (green). Bottom: Space-time trajectories of
reflection lines of a 300× grid (left) and a coarser 50×16 grid (right). In both cases, ridges are obtained as smooth curves.

method not the first choice in such a case. However, the effect quickly
alleviates with increasing integration time as indicated by our other
experiments (see Figure 9 and 10).

7 DISCUSSION

In the following we discuss our method in comparison to existing
methods and summarize advantages and limitations.

Relation to sampling-based FTLE techniques
First of all, our technique is for ridges only! If complete FTLE fields
(either as height fields or as color coded image) are desired, our tech-
nique is not the right choice. Furthermore, our technique is good at
long integration times when the ridge gets very sharp and thin. Since
this is the situation where sampling-based techniques have problems
due to the required high sampling density, we see our approach not as
a replacement but as a complement to sampling-based techniques.

Relation to Sadlo and Weiskopf [23]
Our approach shows some similarities with [23]. In particular, the
idea of tracking a ridge from the trajectory of a separation point is
similar. However, the way for finding this seed curve is fundamentally
different: [23] (and [30]) obtain seed structures from a sampling-based
approach, namely by finding and intersecting forward and backward
FTLE ridges. Therefore, they carefully elaborate on the sensitivity
to the sampling density. Contrarily, our approach needs relatively few
integrations to obtain seed curves with high accuracy. This allows us to
extract longer and more complicated FTLE ridges than [23] (consider
the double gyre data set which is also shown there).

Extension to 3D
The process of creating the reflected field w can be extended to 3D.
In fact, all formulas (2),. . . ,(6) apply to 3D as well except for (5).
For this, there exists a 3D extension of feature flow fields [31]. The
main technical problem in 3D is the surface sampling and reconstruc-
tion from point samples. In particular, there is no simple arc length
parametrization as for 1D curves (see 5.3). The efficient and accu-
rate sampling and reconstruction of 2D ridge surfaces that are approx-
imated by uniformly sized or gradually adapting elements (triangles or
quads) is much more challenging. We leave this to future research.

Sensitivity of the offset parameter γ

Generally, the larger the offset |γ| (see 5.3), the further the extracted
ridge goes, but the less accurate it tends to be. The problem with

coming up with a reliable offset has been discussed in [23] and [30],
and it manifests similarly here: The choice of |γ| depends on the data
and error of the seed curve. And there is no guarantee that a particular
choice ensures tangent continuity of the ridge.

Completeness of the extracted ridges
Our method finds only those FTLE ridges that are caused by moving
saddles. Other possible causes of FTLE ridges, such as a strong shear
are not detected. We do not see this as a limitation since such ridges
are often undesired and removed in a post-process [19] anyway.

8 CONCLUSIONS

We have introduced a new approach to extract 2D FTLE ridges by
constructing and integrating a new time-dependent vector field that
is obtained by reflecting the given velocity field. This way, particles
converge toward the ridge under backward integration. Our approach
needs only a few samplings and increases accuracy with integration
time, not with increasing sampling density. In this sense, we contribute
a new method that complements the standard sampling-based FTLE
extractors especially for very long integration times.
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