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Abstract
Radial axes plots are projection methods that represent high-dimensional data samples as points on a two-dimensional plane.
These techniques define mappings through a set of axis vectors, each associated with a data variable, which users can ma-
nipulate interactively to create different plots and analyze data from multiple points of view. However, updating the direction
and length of an axis vector is far from trivial. Users must consider the data analysis task, domain knowledge, the directions
in which values should increase, the relative importance of each variable, or the correlations between variables, among other
factors. Another issue is the difficulty to approximate high-dimensional data values in the two-dimensional visualizations, which
can hamper searching for data with particular characteristics, analyzing the most common data values in clusters, inspecting
outliers, etc. In this paper we present and analyze several optimization approaches for enhancing radial axes plots regarding
their ability to represent high-dimensional data values. The techniques can be used not only to approximate data values with
greater accuracy, but also to guide users when updating axis vectors or extending visualizations with new variables, since they
can reveal poor choices of axis vectors. The optimal axes can also be included in nonlinear plots. In particular, we show how
they can be used within RadViz to assess the quality of a variable ordering. The in-depth analysis carried out is useful for
visualization designers developing radial axes methods, or planning to incorporate axes into other visualization methods.

CCS Concepts
• Human-centered computing → Visualization techniques; Visualization theory, concepts and paradigms; • Mathematics of
computing → Exploratory data analysis;

1. Introduction

Plots based on radial axes [Gab71, Kan00, LT13, RSSL17,
SSRMJ∗18] are multivariate visualization techniques that have
been used mainly for exploratory purposes including cluster anal-
ysis, outlier and trend detection, or decision support tasks. In a
broad sense, they can be understood as dimensionality reduction
techniques, since they map high-dimensional numerical data points
onto a lower-dimensional observable space, which is typically a
plane. By visualizing the projected points through dots or other
markers, users can obtain insights about the relationships between
the data points, albeit the loss of information associated with the
dimensionality reduction process.

There are several notable differences between visualization
methods based on radial axes and most dimensionality reduction
approaches (see [MH08, TLZM16, MHSG18, EMK∗19, Sau20]).
While the former are usually linear, the latter generally define non-
linear transformations. Most importantly, plots based on radial axes
show information related to data attributes by depicting a set of
“axis” vectors, where each one is associated with a different vari-
able. Some methods also show straight lines that represent axes

in the directions of the vectors. Unlike in other dimensionality re-
duction methods, the possibility to visualize these vectors and axis
lines allows analysts to intuitively infer relationships between vari-
ables, and between the data points and the variables. Lastly, several
methods based on radial axes are interactive in the sense that users
can update the axis vectors freely, creating customized mappings
for examining the data from multiple points of view.

One of the main challenges users face when working with radial
axes methods is deciding where to locate the axis vectors. Updating
the direction and length of an axis vector, or choosing the coordi-
nates of a new one to be added to the visualizations, is far from triv-
ial. Users must consider the data analysis task, domain knowledge,
the relative importance of each variable, or the correlations between
variables, among other factors. Another issue is the difficulty to ap-
proximate and compare high-dimensional values in the embedding
space, which can negatively affect searching for data with particular
characteristics, analyzing the most common data values in clusters,
inspecting outliers, etc.

In this paper we present and analyze several optimization ap-
proaches for finding axis vectors and lines that better reflect the
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directions in which variable values are ordered or increase in the
plots. Specifically, we focus on enhancing the ability of the radial
methods to represent high-dimensional data values. The techniques
can be used not only to approximate data values with greater accu-
racy, but also to guide users when updating axis vectors or extend-
ing visualizations with new variables, since they can reveal poor
choices of axis vectors. The optimal axes can even be included in
some nonlinear embeddings. In particular, we show how they can
be used within RadViz [HGM∗97, GJH∗01, SGM08, DGRG12] to
assess the quality of a variable ordering. While the paper proposes
several algorithms based on optimization problems, it can also be
considered as a theoretical work (we provide proofs and deriva-
tions in the lengthy supplemental material). The in-depth analysis
carried out is useful for visualization designers developing radial
axes methods, or planning to incorporate axes into other visualiza-
tion techniques.

The paper is organized as follows. Section 2 reviews key con-
cepts, introduces the main notation, and describes related work. In
Section 3 we present the approaches for obtaining optimal axes in
radial axes plots. Finally, Sec. 4 presents a discussion.

2. Related work and notation

Multivariate embeddings map each data sample x∈R
n onto an em-

bedded point p ∈ R
m. In this paper we will assume m = 2. Given

a data set of cardinality N, X will represent the N × n data matrix
whose rows contain the data samples, while P will be an N × 2
matrix whose rows consist of the data samples’ low-dimensional
representations.

Methods based on radial axes define their mappings through a
set of two-dimensional “axis” vectors vi, for i = 1, . . . ,n, gener-
ally depicted with a common origin point, where vi is associated
with the i-th data variable (see Fig. 1). In this paper V will rep-
resent the n× 2 matrix whose i-th row is vi. The main benefit of
these methods resides in the possibility to visualize the axis vectors
and their associated axis lines, which convey diverse information
related to high-dimensional data values, correlations between vari-
ables, or the relevance of the variables in the visualizations.

2.1. Star coordinates

One of the earliest and most popular radial axes method is star co-
ordinates (SC) [Kan00, Kan01]. Given a particular data sample x,
its associated low-dimensional embedded point p is:

p = x1v1 + x2v2 + · · · + xnvn = VTx. (1)

Equivalently, in matrix notation the SC mapping is defined as:

P = XV. (2)

The method therefore produces a linear mapping of the data defined
by V, and explicitly shows its components through the axis vectors.
Roughly speaking, vi points towards a region in the plot where we
would expect to find points with larger values for the i-th attribute,
since increasing xi shifts p in the direction of vi. In addition, the
length of vi is related to the relative contribution of the i-th variable
to the visualization, assuming that the variables have a similar scal-
ing. In practice the attributes are either normalized to lie in the [0,1]
interval, or standardized (i.e., to have zero mean and unit variance).

There are two main ways to use the technique. On the one hand,
the matrix of axis vectors V can be fixed. For example, it may
be computed through automatic linear procedures such as princi-
pal component analysis (PCA) [Jol10], linear discriminant analysis
(LDA) [McL04], optimal sets of projections [LT16b], general pro-
jective maps [LT16a], or many others. In these cases the axis vec-
tors provide insight about the role of the variables in the automatic
methods. On the other hand, users can specify and adapt the axis
vectors interactively in order to generate desired linear mappings of
the data, and search for data with particular characteristics, analyze
cluster structure from multiple points of view, or detect outliers,
among other tasks. Lastly, interaction in SC is effective for a mod-
erate number of variables (up to 15-20) [ML19].

Figure 1(a) shows a SC plot of the Auto MPG data set, available
at the UCI Machine Learning Repository [Lic13], for four of its
variables. In this example we have chosen the axis vectors in order
to characterize cars with high Horsepower and Acceleration, but
low MPG, which appear at the top of the visualization. In addition,
cars located towards the right will tend to have larger Displacement
values. The graphic also includes an example of the method’s linear
combination through a concatenation of the lighter vectors (which
are axis vectors scaled by the attribute values of a data sample) that
forms a path that starts at the origin and ends at the embedded point.
Note that there is usually an infinite number of paths that can end at
an embedded point. Therefore, in practice it is very difficult to esti-
mate the high-dimensional values (xi) associated with an embedded
point p by simply visualizing the plot, as shown in [RSS14].

2.2. Orthographic star coordinates

Orthographic star coordinates (OSC) [LT13] is a special case of SC
where the columns of V are constrained to form an orthonormal set
of vectors. In other words, V must be orthogonal: VTV= I, where I
is the 2×2 identity matrix. OSC enhances classical SC by avoiding
linear distortions. For example, hyperspheres are transformed into
circles, and not ellipses.

In practice it is cumbersome to select a set of axis vectors in-
teractively that forms an orthogonal matrix. Note that when a user
updates an axis vector (i.e., a row of V) the rest need to be modi-
fied simultaneously. Therefore, users typically select some desired
set of axis vectors, and subsequently replace them by the rows of
an orthogonal matrix V⊥ with the same range as that of V. The re-
sulting matrix can be found in several ways. For example, it can be
computed through a matrix multiplication:

V⊥ = VB, (3)

where B is an appropriate 2× 2 nonsingular matrix. For instance,
a well-known approach consists of computing the QR decompo-
sition of V, which is equivalent to performing the Gram-Schmidt
orthonormalization procedure. In that case V = V⊥R, where R is
an upper triangular 2×2 invertible matrix. Thus, V⊥ = VR−1. Fig-
ure 1(b) shows an OSC plot with standardized data.

A recent closely related variant is shape-preserving star coor-
dinates (SPSC) [ML19]. It relaxes the orthogonality condition of
OSC in order to scale the plots by some factor β > 0. The con-
straint in SPSC is therefore VTV = β I, which can be beneficial
when converting a SPSC plot into another one.
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Figure 1: Examples of plots based on radial axes of the Auto MPG data set. The dark axis vectors in each plot correspond to four variables
(Horsepower, Acceleration, Displacement, and MPG) of the data set, while the dots represent individual samples (i.e., cars). In (a) the graphic
is a SC plot, where we have included the concatenated orange arrows to symbolize the linear combination of (scaled) axis vectors that results
in the darker embedded point. In this example we have chosen the axis vectors in order to show cars with high Acceleration and Horsepower,
but low MPG, at the top of the plot. In addition, the cars can also be characterized horizontally according to their Displacement attribute.
The graphic in (b) is an OSC plot, where the orthogonal transformation matrix is as similar as possible to the one used in (a). In (c) we show
a PCA biplot with axis lines where the axis vectors are oriented very differently as in the previous plots. In (d) the graphic is an ARA plot with
the same axis vectors as in (a). These last two visualizations also include labeled axes in order to help users approximate high-dimensional
data attributes by projecting points orthogonally onto those axes. In this paper we focus on minimizing the sum of squared differences
between these approximations and the true data values, which we denote as “estimation error”. Finally, in (a) the data is normalized to lie
in the [0,1] interval, while the rest of the visualizations use standardized (i.e., centered and of unit variance) data.

2.3. Principal component biplots

Principal component biplots (PCB) [Gab71, GH95, Gre10,
GGLlR11] are static linear plots that are optimal (in a least-squares
sense) regarding the ability to represent high-dimensional data val-
ues on a lower-dimensional space. Specifically, PCB calculate sets
of embedded points and axis vectors by solving the following opti-
mization problem:

minimize
P ∈ R

N×2,V ∈ R
n×2

‖PVT−Xc‖
2
F, (4)

where Xc is a centered version of the data matrix X, the subscript
F denotes the Frobenius norm. Note that PCB solve for P and V
simultaneously, and the matrix PVT is an optimal approximation
of the data. The solution is given by:

PVT = (kUD1−d)
(1

k
DdZT

)

, (5)

for some suitable (scaling) constants k and d, and where the prod-
uct UDZT is the (compact) singular value decomposition of the
optimal rank 2 approximation of the data matrix Xc, according to
the (squared) Frobenius norm (see [EY36, RSSL17]). If k = 1 and
d = 0 (i.e., P = UD and V = Z) the PCB is the well-known PCA
plot, which can also be considered as an OSC plot since VTV = I.

An important feature of biplots is the use of additional labeled
(also denoted as “calibrated”) axis lines that users can employ to
estimate high-dimensional data values. Specifically, users extract
these approximations (PVT) visually by projecting the embedded
points orthogonally onto the axes. Note that biplots find optimal
axis vectors and embedded points that minimize the squared dif-
ferences between these approximations and the true data values,
which we denote as “estimation errors”. The methods presented in
this paper will also minimize these estimation errors. Lastly, since
the approximations are dot products between the embedded points

and the axis vectors, the distance between consecutive integers on
the i-th axis line must be 1/‖vi‖. Figure 1(c) shows a PCA plot of
the Auto MPG data set with the additional axis lines. We used a
standardized version of the data set to construct the plot (consecu-
tive tick marks are separated by one standard deviation), but labeled
the axes to reflect original non-standardized values.

2.4. Adaptable radial axes plots

Adaptable radial axes (ARA) plots [RSSL17] is a hybrid approach
between SC and PCB. Similarly to SC, users can generate arbitrary
linear mappings by selecting the axis vectors interactively. How-
ever, the embedded points are computed in order to optimize the
approximations of high-dimensional data values (i.e., minimize es-
timation errors), similarly to biplots. Linear ARA plots (there are
other types of nonlinear variants) are based on solving the follow-
ing optimization problem:

minimize
P ∈ R

N×2
‖PVT−X‖2

F. (6)

In practice X should be replaced by its centered version Xc, since
this improves the approximations considerably. Thus, the data is
typically standardized when applying the technique.

The objective function is identical to the one in (4), but in this
case V and X are known, while P is the only variable. The solution
is given by:

P∗ = X[V†]T = X[VT]†, (7)

where † denotes the Moore-Penrose pseudoinverse matrix. In the
rest of the paper we will assume that the columns of V are linearly
independent (i.e., V has rank 2, and VTV is nonsingular), which
occurs if at least two axis vectors point in different directions. In
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that case (7) can be expressed as:

P∗ = X[(VTV)−1VT]T = XV(VTV)−1. (8)

Note that if V is orthogonal an ARA plot is also an (orthographic)
star coordinates plot. Figure 1(d) shows an example of an ARA plot
with standardized data, for the same axis vectors used in Fig. 1(a).
Similarly to PCB, the plot includes axis lines for approximating
high-dimensional data values. It is also possible to incorporate axis
lines in SC plots. However, the main advantage of ARA over SC is
that its estimates of attribute values are usually considerably more
accurate. Although ARA plots do not represent the data as well as
PCB, they constitute a reasonable alternative when analysts must
interact with or choose a desired collection of axis vectors (as in
Figure 1(d) when searching for specific cars). Lastly, Scaled Radial
Axes (SRA) [SSRMJ∗18] is a variant of ARA that scales the axis
vectors so that the label associated with the value 1 is located at
the tip of the vector. The technique is useful for reducing overlaps,
since in some cases it does not require depicting axis lines.

2.5. RadViz

A well-known radial technique related to SC is RadViz. It can be
seen as a special case of SC if the data (which must be nonneg-
ative) has been previously normalized so that the components of
each sample add up to one [RSRDS16]. The motivation for RadViz
stems from a physical spring system metaphor where the vectors vi
define anchor points for the springs rather than axis vectors or lines.
Since RadViz is nonlinear and does not show vectors or line axes,
we do not consider it to be a method based on radial axes in the
context of this paper. However, in Sec. 3.2.4 we propose a practical
application that incorporates vectors in RadViz visualizations.

3. Optimal axes for radial axes plots

In this section we present several approaches for improving SC and
ARA plots regarding the ability to approximate data attributes (i.e.,
minimize estimation errors) by projecting embedded points onto la-
beled axes. The techniques generate or update alternative axis vec-
tors and lines by solving diverse optimization problems.

3.1. Axis calibration (CAL)

In PCB the distances between consecutive integers on their i-th axis
line must be 1/‖vi‖. While this standard axis calibration is optimal
for PCB, it is generally not for SC and ARA. Instead, assuming
that the axes represent values on a linear scale, we can minimize
the estimation errors for each variable independently by scaling and
shifting its labels. Formally, the optimal scaling (αi) and shift (βi)
for the i-th axis can be found by solving:

minimize
αi,βi ∈ R

N

∑
j=1

(
αi(pT

j vi)+βi − x j,i
)2
,

(9)

where p j is the j-th embedded point, and x j,i is the i-th attribute
of the j-th data sample. Note that the estimate of x j,i is x̂ j,i =

αi(pT

j vi)+βi. The optimal solutions are (see the supplemental ma-
terial):

α∗
i =

N

∑
j=1

x j,i(pT

j vi)− x̄i

N

∑
j=1

pT

j vi

N

∑
j=1

(pT

j vi)
2 −

1
N

(
N

∑
j=1

pT

j vi

)2 , (10)

and

β ∗
i = x̄i −

α∗
i

N

N

∑
j=1

pT

j vi, (11)

where x̄i is the mean of the i-th data attribute. Note that with this
basic approach the axis vectors and embedded points do not vary
in the visualizations. Thus, the plot will remain consistent with the
SC or ARA model described in (2) or (7). In the rest of the paper
we will denote this approach as CAL.

Regarding the placement of the labels, the separation between
integers on the i-th axis line is 1/(αi‖vi‖). Thus, the label for x̂ j,i
should be placed at:

pT

j vi

‖vi‖
·

vi

‖vi‖
=

x̂ j,i −βi

αi‖vi‖2 ‖vi‖. (12)

Naturally, if x̂ j,i is a normalized value (typically obtained through
some affine transformation), it would be necessary to undo the nor-
malization in order to show the label for its original value.

Figure 2 illustrates how it is possible to enhance the estimates of
high-dimensional data by labeling the axes adequately. The visual-
izations correspond to a SC plot of four variables of the Auto MPG
data set that have been normalized to lie in [0,1]. In (a) we show the
axis line associated with Displacement, whose horizontal axis vec-
tor has length 3/4, and use the standard calibration procedure used
in biplots and ARA. The labels associated with 0 and 1 appear at
the origin, and at the point v/‖v‖2 = (4/3,0), respectively, but we
show the minimum (68) and maximum (455) unnormalized values
of the variable. In this case the estimates, obtained by projecting
embedded points orthogonally onto the axes, are poor. Since most
of the plotted points lie to the left of the shaded region we would
be underestimating the high-dimensional values (many estimates
would be smaller than 68). In (b) we have scaled and shifted the
axis optimally through the described calibration procedure, which
improves the estimates considerably. Notice that the majority of the
plotted points lie within the shaded region. In Sec. 3.2 we describe
an alternative approach for improving the estimates.

In Tab. 1 we show the benefit of using the calibration approach
regarding estimation accuracy, as well as several properties and re-
lationships related to the radial axes methods. Since there is a lower
bound on the approximation accuracy given by PCB, we show ra-
tios of estimation errors for an entire data set (‖PVT −X‖2

F) for a
particular method, over the same quantity but for a PCB. We used
five diverse data sets (Mice protein expression, SPECTF Heart -
training, Ionosphere, Multiple Features - Fourier coefficients, Wa-
ter Treatment Plant) available at [Lic13], where we normalized the
variables to lie in [0,1] and also discarded samples with missing
values. The results are average ratios over 100 trials, where in each
one we selected one of the data sets at random, and n = 5, 10 and
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Figure 2: Data approximation improvement when applying CAL and OPT. The graphics are SC plots of four variables of the Auto MPG data
set, which have been normalized to lie in [0,1]. In (a) we have applied the standard calibration used in biplots and ARA to the Displacement
axis, and labeled it with original (unnormalized) values. The minimum (68) is located at the origin, while the maximum (455) is further to
the right. Since we obtain approximations by projecting embedded points orthogonally onto the axes, ideally these points should lie within
the shaded region. Since most are outside of it the data estimates will be poor. In (b) we can enhance the estimation accuracy by applying
the optimal calibration described in CAL, which shifts and scales the axes. Note that more plotted points lie inside the shaded region. In (c)
we have applied OPT, which generates an axis with a different direction for which it is possible to enhance the approximations even further.

n = 5 n = 10 n = 15
x̄ 6= 0 x̄ = 0 x̄ 6= 0 x̄ = 0 x̄ 6= 0 x̄ = 0

V Vθ V Vθ V Vθ V Vθ V Vθ V Vθ
SC 395.2 39.07 47.87 4.389 879.2 83.71 160.2 14.22 2575 112.6 320.1 17.18

ARA or OSC 16.34 1.969 50.00 6.373 83.26 12.65
SC + CAL 1.905 6.233 11.84

(ARA or OSC) + CAL 1.723 5.505 11.31
(SC, ARA, or OSC) + OPT 1.554 4.941 10.03

Table 1: Estimation error ratios. The values are averages of total estimation errors (‖PVT−X‖2
F) for a particular method and optimization

strategy, divided by the minimal estimation error associated with a PCB. Also, x̄ = 0 denotes centered data, V indicates a matrix with entries
drawn from a standard normal distribution, and Vθ is a scaled version of V according to (19). In this experiment we used five real data sets
and computed the averages over 100 trials. In each one we selected n variables at random from one of the five data sets.

15 of its variables also at random. We used two types of matrices
of axis vectors: V and Vθ . The elements of V were drawn from a
standard normal distribution. Alternatively, Vθ (see Sec. (3.2.3)) is
simply a scaled version of V that usually leads to more accurate es-
timates. We also ran experiments, denoted through x̄ = 0, in which
we centered the data in [0,1].

In the first row we show the ratios when using SC and the stan-
dard calibration approach. It is apparent that centering the data is
crucial, while scaling V can also affect the estimation accuracy con-
siderably. For ARA and OSC scaling V does not affect the esti-
mates, but centering the data is also critical. It is also worth noting
that the estimates (x̂ j,i) for ARA and OSC are identical, assuming
the columns of V⊥ and V span the same subspace (see Prop. 1 in
the supplemental material), which occurs when (3) holds.

Applying CAL enhances the estimates, which are better for ARA
and OSC than for SC. This result should not be surprising, since the
estimates for SC are considerably poorer than for ARA and OSC
when applying the standard calibration used in biplots. In the next
section we introduce an alternative approach that not only leads to
better estimates, but these will be identical for the three analyzed
radial methods.

3.2. Optimal axes for fixed embedded points (OPT)

In radial axes methods users specify axis vectors to indicate direc-
tions in which high-dimensional values should increase. However,
since the location of an embedded point depends on the values and
axis vectors of every variable, the orientations of the axis vectors
will generally not reflect the best directions in which variable val-
ues are ordered (i.e., in which they increase). While in CAL the
orientations of the axis vectors do not change, in this section we
propose visualizing alternative axis vectors and lines that may be
oriented differently, and which are optimal for approximating high-
dimensional attribute values. Fig. 2(c) illustrates the idea, where the
approach is able to find new axes for minimizing estimation errros
even further.

3.2.1. Problem description

Given a data set X and a collection of embedded points P, we model
the approach through the following optimization problem:

minimize
vi ∈ R

2,γi ∈ R

N

∑
j=1

(
pT

j vi + γi − x j,i
)2

, (13)
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where vi is the optimal axis vector for the i-th data attribute. The
second variable of the problem is the offset scalar γi that we in-
troduce to shift the labels along its associated axis. This variable
is necessary for obtaining optimal estimates for noncentered data.
Note that ARA and biplots do not use these offsets and therefore re-
quire the data to be centered in order to produce optimal estimates.
The solutions to the problem are (see the supplemental material):

v∗i = P†
cxi, (14)

and

γ∗i = x̄i −
1
N

N

∑
j=1

pT

j v∗i , (15)

where Pc is the N × 2 matrix of centered plotted points, which we
assume has rank 2. Considering all of the variables (14) can be
expressed in matrix notation as:

VT

∗ = P†
cX, (16)

where v∗i is the i-th row of V∗. In the remainder of the paper we
will denote this approach as OPT.

3.2.2. Comparison with CAL

In comparison with CAL, the approach provides more accurate ap-
proximations of high-dimensional data values since it can modify
the orientation of the axis lines. Also, the lengths of the new axis
vectors, together with the shift offsets, are also optimal regarding
calibration. Note that OPT does not require scaling the dot products
(through factors such as the αi in CAL). Thus, the separation be-
tween integers on the i-th axis line will remain 1/‖v∗i ‖, as in ARA
or biplots.

In Sec. 3.1 we saw that the approximation accuracy was identical
for ARA and OSC after applying CAL (if R(V) = R(V⊥), where
R denotes the range of a matrix), but poorer for SC. Although it
would seem natural to expect similar results when applying OPT,
the accuracy for SC is the same as that for ARA and OSC (see
Prop. 2 and Cor. 1 in the supplemental material). Thus, in Tab. 1
we report the same value for the three methods after applying OPT.
The main implication is that it is possible to mitigate the estimation
accuracy limitation of SC by applying OPT, without the need to
start with an ARA or OSC plot.

3.2.3. Guidelines for updating plots

Using the optimal axis vectors (V∗) leads to more accurate esti-
mates. Thus, the v∗i reflect directions in which attribute values in-
crease, or are ordered, better than the original vectors (V). For ex-
ample, they are generally more effective for determining the great-
est and smallest data values. In addition, they can be visualized in
order to guide users regarding how to update a plot. For instance,
if there is a clear discrepancy between the directions of vi and v∗i ,
users should seriously analyze the appropriateness of the orienta-
tion of v, and consider replacing v by v∗, or simply updating v
towards v∗. These updates generally (although not necessarily) im-
prove the approximations of high-dimensional values.

Fig. 3 shows an example with the Olives data set [Lic13]. The
graphic in (a) is a SC plot where the total squared estimation error
is 965, while in (b) we have replaced the vector for Palmitic by its
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Figure 3: Poor choices of axis vectors revealed by OPT, and dis-
tributions of absolute angle differences between axis vectors in V
and V∗ when applying OPT on the standardized Olives data set.
An initial SC plot is shown in (a), where the total squared estima-
tion error is 965 after applying CAL. In (b) we have replaced the
Palmitic vector by its counterpart obtained through OPT, which is
clearly different, and causes the error to drop to 272. In (c) and (d)
we show distributions of absolute angle differences between vectors
in V and V∗ when applying OPT. In (c) we generated regular con-
figurations of axis vectors for every ordering of the eight data vari-
ables, while in (d) we used random matrices whose elements were
drawn from a standard normal distribution. In both cases there is
an appreciable number of differences greater than 90◦.

optimized counterpart, which is clearly different (the angle differ-
ence exceeds 90◦). In this case the estimation error drops consid-
erably to 221, which indicates that the initial choice of axis vector
for Palmitic was poor regarding estimation accuracy. This is be-
cause Palmitic is negatively correlated with Oleic (r =−0.84), but
positively correlated with Palmitoleic (r = 0.84).

For real data sets the orientation differences between vi and v∗i
can be noteworthy in SC. In Fig. 3(c) and (d) we show distribu-
tions of angle differences between vi by v∗i in an experiment in-
volving the eight (standardized) variables of the Olives data set.
For the plot in (c) we generated the 7!/2 different (excluding ro-
tations and reflections) regular configurations of eight axis vectors
(vi = [cos(iπ/4),sin(iπ/4)]), while in (d) we used 7!/2 random
matrices V whose elements were drawn from a standard normal
distribution. Each histogram therefore reports 8!/2 absolute angle
differences between vi by v∗i when applying OPT. The percentage
of differences greater than (90◦) was 9.57% and 14.7% in (c) and
(d), respectively. The histograms illustrate that for plots involving
a moderate number of variables it is not uncommon to find at least
one fairly large discrepancy in the orientations of the vi and v∗i .
Lastly, we obtained similar results with other real datasets.
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Figure 4: Comparison of SC (vi), ARA (ui), and optimal (v∗i ) axis
vectors. Firstly, there is usually an inverse relation between the
lengths of SC axis vectors and the lengths of v∗i . In this example the
SC vectors in (b) are twice as long as in (a). Also, ARA axis vectors,
which produce the same embedded points, are usually more similar
to v∗i . Nevertheless, they can point towards notably different direc-
tions (in particular, u3 and v∗3 in the example).

Since OPT only depends on P and X, it is independent of the par-
ticular method used to obtain P, whether it is SC, ARA, or any di-
mensionality reduction algorithm, which does not need to be based
on radial axes necessarily (in Sec. 3.2.4 we present an example us-
ing RadViz). However, the new axis vectors would not reflect the
underlying algorithm that generates the plotted points P. Note that,
since P and X are fixed, replacing V with V∗ would lead to incon-
sistent SC or ARA models, i.e., (2) and (7) would not hold. Were
we to generate a new set of embedded points through (7) for ARA,
in accordance with V∗, the approximation accuracy for the result-
ing (consistent) plot is guaranteed to improve. Specifically, apply-
ing (16) and (7) successively until convergence results in a PCB.
This process is known as the alternating minimization algorithm
(see [UHZB16]). We have also seen experimentally that applying
(16) and (2) repeatedly also converges to a PCB. Furthermore, these
iterative processes also converge to a PCB if we replace only one
original axis vector (instead of the full matrix V) by its optimal
counterpart.

When deciding whether to replace some SC axis vector vi with
v∗i , it is convenient for them to have similar lengths. However, in
SC the lengths of the optimal vectors are inversely related to the
lengths of the original vectors. Note that if vi is long the associ-
ated attribute values will be more spread out along the related axis.
Consequently, ‖v∗i ‖ will be short, since units along an axis are sep-
arated by the inverse of the length of the corresponding axis vector.
Figure 4 illustrates this inverse relation through two plots in which
we have chosen a different scaling for the SC axis vectors (vi). We
chose the ARA axis vectors, in this case denoted as ui, that would
produce the same embedded points. Thus, the n×2 transformation
matrix for ARA is [V†]T, and the optimal axis vectors are the same
for both methods. The example also shows that v∗i is usually more
similar to ui than vi. The v∗i can nevertheless have clearly differ-
ent orientations, and therefore be useful for steering users towards
plots that represent the data more faithfully (i.e., in which they can
approximate data values with greater accuracy).

In order to mitigate the discrepancy between the lengths of vi and
v∗i , the matrix V can be scaled by some adequate factor θ . Specifi-

cally, we propose solving the following optimization problem:

minimize
θ ∈ R

‖θV−Vθ
∗ ‖

2
F , (17)

where Vθ
∗ represents the matrix of optimal axis vectors after having

applied the scaling operation. For SC Vθ
∗ = V∗/θ , and the solution

is (see the supplemental material):

θ∗ =

√

‖V∗‖F

‖V‖F
. (18)

Note that this operation (a basic zoom) preserves the ratio between
the lengths of the axis vectors, and therefore users’ intended relative
importance of the variables. We will denote the scaled matrix as:

Vθ = θ ∗V. (19)

Lastly, the approach cannot be applied to ARA since in that case
Vθ
∗ = θV∗, and the solution to (17) would simply be θ = 0.

The lengths of the optimal vectors can also provide information
about the accuracy of the approximations, but analysts should be
careful when interpreting them. When applying OPT on standard-
ized data we usually observe an inverse relationship between ‖v∗i ‖
and the related estimation error (i.e, the objective function of (13)),
which we will denote as εi. Figure 5(a) shows a histogram of Pear-
son correlation coefficients (r) between optimal axis vector lengths
and associated estimation errors. Specifically, we generated 1000
plots of the five data sets used in the experiments reported in Tab. 1,
but in this case we standardized the variables. For each plot we se-
lected at random one of the data sets, 24 of its variables, and an
initial matrix V with entries drawn from a standard normal distri-
bution. Subsequently, we computed r with the pairs (‖v∗i ‖,εi), for
i = 1, . . . ,24. It is apparent that there is a clear negative correlation
in the majority of the plots (although not in all of them). Lastly, we
obtained similar results varying the number of variables and types
of matrices V (regular, orthogonal, scaled, etc.).

Figure 5(b) shows the analogous correlations when normalizing
the data to lie in the [0,1] interval. In this case the distribution of
correlations is approximately centered around 0. Thus, there is not
a clear relationship between ‖v∗i ‖ and εi. Instead, there is usually
a moderate positive correlation between the ‖v∗i ‖ and the variances
of the data variables, as shown in Fig. 5(c).

The discrepancy between the distributions of correlations in
Fig. 5(a) and (b) can be understood by examining the quadratic
forms associated with ‖v∗i ‖

2 and εi. Firstly, note that:

‖v∗i ‖
2 = xT

i (P
†
c)

TP†
c

︸ ︷︷ ︸

�0

xi = xT

c,i (P
†
c)

TP†
c

︸ ︷︷ ︸

�0

xc,i,

where xc,i is the centered version of the i-th data variable. Further-
more, εi can be written and decomposed as follows (see the supple-
mental material):

εi = xT

i [C−PcP†
c ]

︸ ︷︷ ︸

�0

xi = Nσ2
i +xT

c,i [−PcP†
c ]

︸ ︷︷ ︸

�0

xc,i.

Since (P†
c)

TP†
c is positive semidefinite ‖v∗i ‖

2 will generally tend
to have greater values for larger absolute values in xc,i. This also
occurs for εi, but notice that when the data is standardized all of
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Figure 5: Histograms of Pearson correlations (r) between the length of an optimal axis vector ‖v∗i ‖ and: (1) the estimation error, or (2) the
variance, of the associated variable. In (a) we have used standardized data, which usually leads to strong negative correlations. In (b) and
(c) we have used data normalized to lie in [0,1]. In this case, the ‖v∗i ‖ are mainly correlated with the variances of the variables.

the variables have the same variance (σ 2
i = 1). Thus, the term that

characterizes the estimation error involves a negative semidefinite
matrix (−PcP†

c), and εi will usually have smaller values for larger
absolute values in xc,i. This would explain the clear negative cor-
relations in Fig. 5(a). Similarly, for data normalized to lie in [0,1]n

the variance term plays an important role in εi, which explains the
positive correlations in Fig. 5(c).

3.2.4. Example: Application to RadViz

In this section we present an example that introduces optimal axis
vectors in regular RadViz visualizations, where the anchors are
placed evenly around a circle. We will use the axis vectors to as-
sess the quality of variable orderings (i.e., the placement of vari-
ables along the circle), which is frequently addressed in the RadViz
literature [CFMFM10, RDG12, RMK∗14, BLH∗14, Lon18, PT19,
ABL∗19].

In RadViz we can interpret that the anchor points associated with
each variable pull the plotted data points towards them. Roughly
speaking, the force of the pull is stronger for larger values of the as-
sociated attribute. Technically, RadViz differs from the radial meth-
ods analyzed in this paper in the sense that increasing the value of
an attribute moves the plotted points towards the anchor point, and
not in a specific direction. However, we will assume that on average
the data values for a variable should increase in the direction from
the origin to the anchor point (see the supplemental material).

We can evaluate whether the variable values increase in the di-
rection of the anchors by incorporating optimal axis vectors in the
visualizations. Figure 6 shows examples of these extended RadViz
visualizations that use the Olives data set and a randomly selected
ordering of its eight variables. Although the optimal vectors could
be placed at the center of the RadViz plot, we position them with
their origin at their associated anchor point. This avoids overlaps
with the embedded points, which must appear within the convex
hull of the set of anchor points.

The orientation of the vectors reveals the direction in which the
values are optimally ordered, according to the criterion related to
approximation accuracy in (13). In (a) the vector for the variable
Arachidic is very well aligned with the direction of the anchor
point. Therefore, the values of the variable, represented through the
color coding, increase towards the bottom of the plot and are well-
ordered in the visualization. Note that we are representing normal-

ized values whose sum over all variables is equal to one. In contrast,
in (b) the points are colored according to the values of the variable
Palmitoleic. In this case not only are the values not ordered well,
but the optimal axis vector points towards the interior of the RadViz
visualization. Thus, the values for Palmitoleic generally tend to in-
crease as they appear farther from its anchor. This clearly indicates
that the anchor for Palmitoleic should be placed at another location
around the circle. In (c) we have swapped the anchors for Palmi-
toleic and Palmitic, which improves the ordering of the plotted
points with respect to Palmitoleic values. In addition, note that the
distance from the embedded points to the anchors can be mislead-
ing when interpreting attribute values. Notice that the darker blue
points that represent data samples with the largest Palmitoleic val-
ues are located near the center, while there are points with smaller
values (to the left) that are closer to the variable’s anchor. In this
regard, the direction of the enhanced axis vector can help users
avoid misinterpretations related to data values (we have included
an enlarged red copy of the Palmitoleic axis vector, together with a
perpendicular dashed line, simply for reference). Finally, the vec-
tor for Palmitic stands out for being very short. This does not mean
that its estimates will be poor, as occurs in ARA. Instead, it simply
indicates that the variance of the variable is likely to be small (see
the supplemental material). In this example the variances of the rest
of the variables are at least twice as large.

3.3. Optimal single vector updates

With OPT we obtained optimal axis vectors assuming the embed-
ded points remain fixed. In this section we describe procedures for
optimally modifying a single axis vector, or simply scaling it, but
considering that the plotted points would change accordingly (i.e.,
applying the SC or ARA projection rules). These approaches guar-
antee decreasing the total estimation error, which does not occur
necessarily in OPT if we replace a particular vi by v∗i .

In order to simplify the proposed models and their solutions we
will not consider axis offsets in the formulations, such as βi and γi
in (9) and (13), respectively. Notice that these factors do not affect
the scaling constants αi or optimal vectors v∗i in CAL and OPT,
and are only relevant for labeling the axes. Moreover, βi and γi are
simply introduced to account for data that is not centered (note that
both are 0 if the data is centered). Similarly, the offsets will not
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Figure 6: Extended RadViz visualizations of the Olives data set. The plotted points are colored according to Arachidic values in (a), and
the Palmitoleic attribute in (b) and (c), where darker blue dots represent large values (we consider normalized data where the sum of the
attributes for each sample is one). In (a) the optimal axis vector for Arachidic is aligned with the direction of the anchor point, which
indicates that its values appear well-ordered in the visualization. In (b) the enhanced axis vector for Palmitoleic points towards the interior
of the RadViz visualization. Thus, its values generally decrease in the direction of the associated anchor. This suggests that the anchor for
the variable should be located elsewhere in order to enhance the visualization. Also, the directions of the enhanced axis vectors are more
reliable than the distances to the anchors for approximating data values. In (c) we have swapped the anchors for Palmitoleic and Palmitic.
The darker blue points that have the larger values of Palmitoleic are not the closest ones to the corresponding anchor. These points lie to the
right of the red arrow, which is simply an enlarged copy of the Palmitoleic enhanced axis vector. Lastly, we have drawn the perpendicular
dashed line to the vector simply for reference.

be necessary for the solutions in this section (see the supplemental
material).

Given a radial axes plot for some data set X, assume we would
like to scale one axis vector by λ in order to generate a better plot
(where P would change) regarding estimation accuracy. Without
loss of generality, assume the vector to be scaled is the last one vn,
and Ṽ the matrix of the first n− 1 fixed axis vectors. In that case,
we propose solving the following optimization problem:

minimize
λ ∈ R

N

∑
j=1

∥
∥
∥
∥

[
Ṽ

λvT

n

]

p j −x j

∥
∥
∥
∥

2

. (20)

For SC, p j = [ṼT, λvn]x j , and the objective function is a degree 4
polynomial P(λ ). Thus, the solution can be found reliably since it is
a real root of the derivative of P(λ ) (see the supplemental material):

P′(λ ) = 4λ 3
N

∑
j=1

(vT

n vnx j,n)
2 + 6λ 2

N

∑
j=1

x̃T

j ṼvnvT

n vnx j,n

+2λ
N

∑
j=1

(
x̃T

j ṼvnvT

n ṼTx̃ j +(vT

n ṼTṼvn −2vT

n vn)x2
j,n
)

+2
N

∑
j=1

x̃T

j (ṼṼT−2I)Ṽvnx j,n,

where x̃ j is the vector containing the first n−1 components of the
j-th data sample (while x j,n is the corresponding n-th component).

For ARA the objective function is a more complicated quotient
of polynomials, since p j = [Ṽ ; λvT

n ]
†x j . Nevertheless, since it is

a function of a single variable we can compute its solution through
a basic direct search method or a more sophisticated approach (nat-
urally, it is also possible to visualize the curve).
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Figure 7: Optimal length visualization for updated vectors. When
choosing a different orientation for an axis vector (vn) it is possi-
ble to use the solution to (20) to obtain an optimal length for it.
The colored curve included in the plot shows the optimal lengths
for axis vectors orientated between 68◦ and 247◦. It also shows
the direction the axis vector should point towards to (e.g., a vec-
tor oriented at 30◦ ≡ 210◦ should end up pointing towards the 3rd
quadrant). The colors indicate the estimation error that would re-
sult by choosing a vector with its endpoint on the curve. Thus, v+n
is the optimal vector for replacing vn.

We can use the solution to (20) not only to scale vn, but also
to indicate the optimal length of any arbitrary axis vector that we
could use instead of vn. Figure 7 illustrates this idea, where the col-
ored curve indicates the optimal length of a vector that we could use
to replace vn in order to reduce the estimation error. We generated
the curve by setting vn = (cos(θ), sin(θ)), for θ = 1◦, . . . ,180◦,
solving (20), and plotting λvn. Note that it is only necessary to use
vectors for a half circle since λ can be negative. In the example,
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Figure 8: Vector v+n when including the variable Weight in the plot
in Fig. 1(a), which is more aligned with MPG and Displacement
than with Horsepower and Acceleration.

λ is negative for θ = 1◦, . . . ,67◦. The color of the curve is the es-
timation error (i.e., the objective function). We have also depicted
the optimal axis vector for reducing the estimation error, which we
denote as v+n .

It is also important to note that vn could be the axis vector of
a new variable that we wish to include in the plot. The colored
curve would not only indicate the optimal coordinates of the axis
vector (v+n ) for the new variable, it would also show the optimal
vector length for other directions users may want to consider. Fig-
ure 8 shows v+n when including the variable Weight in the plot in
Fig. 1(a). Although the plotted points move in the direction of the
new vector, users will still be able to approximate data values rea-
sonably, since the estimation error is minimal for that specific v+n .

Lastly, a more elegant and precise way to compute v+n consists
of solving:

minimize
vn ∈ R

2

N

∑
j=1

∥
∥
∥
∥

[
Ṽ
vT

n

]

p j −x j

∥
∥
∥
∥

2

. (21)

For SC we use a basic gradient descent method in order to find the
solution. In our experiments the algorithm usually converges (very
efficiently since the variable is a two-dimensional vector) with a
fixed step size of 1/(100nN). The gradient of the objective function
fSC in (21) for SC is (see the supplemental material):

∇ fSC = 2Cvn +2vT

n vna+
(
2D−4I+4vnvT

n
)(

a+xT

n xnvn
)
, (22)

where xn is the n-th column of X (i.e., the vector containing the n-th
attribute for every data sample), D = ṼTṼ, C = ṼTX̃TX̃Ṽ (where
X̃ is the data matrix for the n−1 first variables), and a = ṼTX̃Txn.

The gradient for ARA is far more complex. Thus, we have used
a recursive search method to find the global minimum. Finally, in
practice we run the search or gradient descent methods from four
initial points belonging to each of the four quadrants on the plane.

4. Discussion

In this paper we have presented, compared, and analyzed in detail
several approaches for updating and improving radial axes plots.

The methods are based on optimization problems where the goal
consists of finding alternative or new axis vectors and lines that
better reflect the directions in which variable values are ordered and
increase in the plots. The optimized quality metric is the discrep-
ancy (in a least squares sense) between high-dimensional values
and approximations or estimates of these, which are obtained by
projecting embedded points onto labeled axes. Biplots or PCA also
use this criterion. Besides helping users to obtain better approxi-
mations, the methods can be used to determine the orientation and
length of the axis vectors, which is one of the main challenges users
face when working with radial axes methods. In other words, they
can help users construct or enhance visualizations, either by modi-
fying axis vectors already present in the plots, or by suggesting the
coordinates of new axis vectors (i.e., variables) to be included in
the visualizations.

Regarding the optimal axis vectors described in OPT, showing
them instead of the original axis vectors is generally not an issue.
The original vectors convey information such as: (a) the displace-
ment of an embedded point were we to increase the value of a vari-
able by a unit, (b) a rough measure of the contribution of the vari-
ables to the plot, or (c) low-level intuition about the linear map (i.e.,
how a plot is constructed). However, this information is not useful
for many analysis tasks. Moreover, the optimal vectors are better
suited for searching for data with particular data values, analyzing
the most common data values in clusters, inspecting outliers, etc.

The optimal axes can also be included in other plots. In partic-
ular, we showed how they can be used within RadViz to assess
the quality of a variable ordering. This topic has been explored in
many works in the literature. However, a comparison with these
approaches, which use different criteria to define the quality of an
arrangement, is well beyond the scope of the paper.

In practice, users must consider many factors when selecting the
axis vectors, including the data analysis task, domain knowledge,
the relative importance of each variable, the correlations between
variables, etc. Our approaches are mainly concerned with enhanc-
ing the representation of high-dimensional data values. Thus, we do
not consider tasks such as searching for cluster structure, separat-
ing classes, detecting outliers, etc. Nevertheless, since the methods
suggest new coordinates for axis vectors, they also provide insight
about the relevance of a variable (mainly through the length of the
axis vector) or its correlation with the rest (through the orientation
of the axis vector). We are planning on studying these relationships
as future work.

Finally, while the paper proposes several algorithms based on
optimization problems, it can also be considered as a theoretical
work. The proofs and derivations provided in the supplemental ma-
terial should be useful for visualization designers developing radial
axes methods, or planning to incorporate axes into other visualiza-
tion techniques.
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mensional data Ů a genetic algorithms approach. In 2014 IEEE
Congress on Evolutionary Computation (CEC) (2014), pp. 951–958.
doi:10.1109/CEC.2014.6900619. 8

[CFMFM10] CARO L. D., FRIAS-MARTINEZ V., FRIAS-MARTINEZ
E.: Analyzing the role of dimension arrangement for data vi-
sualization in radviz. In Proceedings of the 14th Pacific-Asia
conference on Advances in Knowledge Discovery and Data
Mining - Volume Part II (2010), PAKDD’10, pp. 125–132.
doi:10.1007/978-3-642-13672-6_13. 8

[DGRG12] DANIELS K. M., GRINSTEIN G. G., RUSSELL
A., GLIDDEN M.: Properties of normalized radial visual-
izations. Information Visualization 11, 4 (2012), 273–300.
doi:10.1177/1473871612439357. 2

[EMK∗19] ESPADOTO M., MARTINS R. M., KERREN A., HIRATA
N. S., TELEA A. C.: Towards a quantitative survey of dimension re-
duction techniques. IEEE Transactions on Visualization and Computer
Graphics (2019). doi:10.1109/TVCG.2019.2944182. 1

[EY36] ECKART C., YOUNG G.: The approximation of one ma-
trix by another of lower rank. Psychometrika 1, 3 (1936), 211–218.
doi:10.1007/BF02288367. 3

[Gab71] GABRIEL K. R.: The biplot graphic display of matrices with ap-
plication to principal component analysis. Biometrika 58, 3 (Dec 1971),
453–467. doi:10.1093/biomet/58.3.453. 1, 3

[GGLlR11] GOWER J., GARDNER-LUBBE S., LE ROUX N.: Under-
standing Biplots. John Wiley & Sons, 2011. 3

[GH95] GOWER J. C., HAND D. J.: Biplots. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability. Taylor & Francis, 1995.
3

[GJH∗01] GRINSTEIN G. G., JESSEE C. B., HOFFMAN P. E.,
O’NEIL P. J., GEE A. G.: High-dimensional visualization sup-
port for data mining gene expression data. In DNA Arrays:
Technologies and Experimental Strategies, Grigorenko E. V., (Ed.).
CRC Press LLC, Boca Raton, Florida, 2001, ch. 6, pp. 86–131.
doi:10.1201/9781420038859.ch6. 2

[Gre10] GREENACRE M.: Biplots in Practice. BBVA Foundation, 2010.
3

[HGM∗97] HOFFMAN P., GRINSTEIN G., MARX K., GROSSE I.,
STANLEY E.: DNA visual and analytic data mining. In Proceed-
ings of the 8th conference on Visualization ’97 (Los Alamitos, CA,
USA, 1997), VIS ’97, IEEE Computer Society Press, pp. 437–441.
doi:10.1109/VISUAL.1997.663916. 2

[Jol10] JOLLIFFE I. T.: Principal component analysis. Springer series in
statistics. Springer-Verlag, 2010. 2

[Kan00] KANDOGAN E.: Star coordinates: A multi-dimensional visual-
ization technique with uniform treatment of dimensions. In Proceedings
of the IEEE Information Visualization Symposium, Late Breaking Hot
Topics (2000), pp. 9–12. 1, 2

[Kan01] KANDOGAN E.: Visualizing multi-dimensional clusters, trends,
and outliers using star coordinates. In Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data
mining (New York, NY, USA, 2001), KDD’01, ACM, pp. 107–116.
doi:10.1145/502512.502530. 2

[Lic13] LICHMAN M.: UCI machine learning repository, 2013. URL:
archive.ics.uci.edu/ml. 2, 4, 6

[Lon18] LONG T. V.: Arcviz: An extended radial visualization for classes
separation of high dimensional data. In 10th International Conference

on Knowledge and Systems Engineering (KSE) (2018), pp. 158–162.
doi:10.1109/KSE.2018.8573428. 8

[LT13] LEHMANN D. J., THEISEL H.: Orthographic star coordinates.
IEEE Transactions on Visualization and Computer Graphics 19, 12 (De-
cember 2013), 2615–2624. doi:10.1109/TVCG.2013.182. 1, 2

[LT16a] LEHMANN D. J., THEISEL H.: General projective maps for
multidimensional data projection. Computer Graphics Forum (2016).
doi:10.1111/cgf.12845. 2

[LT16b] LEHMANN D. J., THEISEL H.: Optimal sets of pro-
jections of high-dimensional data. IEEE Transactions on Vi-
sualization and Computer Graphics 22, 1 (Jan 2016), 609–618.
doi:10.1109/TVCG.2015.2467324. 2

[McL04] MCLACHLAN G. J.: Discriminant analysis and statistical pat-
tern recognition. Wiley series in probability and mathematical statis-
tics. Probability and mathematical statistics. Wiley-Interscience, 2004.
doi:10.1002/0471725293. 2

[MH08] MAATEN L. V., HINTON G. E.: Visualizing high-dimensional
data using t-SNE. Journal of Machine Learning Research 9 (2008),
2579–2605. 1

[MHSG18] MCINNES L., HEALY J., SAUL N., GROSSBERGER
L.: UMAP: Uniform Manifold Approximation and Projec-
tion. Journal of Open Source Software 3 (09 2018), 861.
doi:10.21105/joss.00861. 1

[ML19] MOLCHANOV V., LINSEN L.: Shape-preserving star coordi-
nates. IEEE Transactions on Visualization and Computer Graphics 25,
1 (2019), 449–458. doi:10.1109/TVCG.2018.2865118. 2

[PT19] PAGLIOSA L., TELEA A.: Radviz++: Improvements
on radial-based visualizations. Informatics 6, 16 (04 2019).
doi:10.3390/informatics6020016. 8

[RDG12] RUSSELL A., DANIELS K., GRINSTEIN G.: Voronoi diagram
based dimensional anchor assessment for radial visualizations. In Pro-
ceedings of the 2012 16th International Conference on Information Visu-
alisation (Washington, DC, USA, 2012), IV’12, IEEE Computer Society,
pp. 229–233. doi:10.1109/IV.2012.46. 8

[RMK∗14] RUSSELL A., MARCEAU R., KAMAYOU F., DANIELS K.,
GRINSTEIN G.: Clustered data separation via barycentric radial visual-
ization. In Proceedings of the 2014 International Conference on Model-
ing, Simulation and Visualization Methods (MSV) (2014), pp. 101–Ű107.
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pp. 287Ű–297. doi:10.1145/2872427.2883041. 1

[UHZB16] UDELL M., HORN C., ZADEH R., BOYD S.: Generalized
low rank models. Foundations and Trends in Machine Learning 9, 1
(June 2016), 1–118. doi:10.1561/2200000055. 7

[YMSJ05] YI J. S., MELTON R., STASKO J., JACKO J. A.: Dust
& magnet: multivariate information visualization using a mag-
net metaphor. Information Visualization 4, 4 (2005), 239–256.
doi:10.1057/palgrave.ivs.9500099. 14

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/https://doi.org/10.1016/j.eswa.2018.01.054
https://doi.org/10.1145/2872427.2883041
https://doi.org/10.1561/2200000055
https://doi.org/10.1057/palgrave.ivs.9500099


M. Rubio-Sánchez, D. J. Lehmann, A. Sanchez & J. L. Rojo Álvarez / Optimal Axes for Data Value Estimation in Star Coordinates and Radial Axes Plots

Appendix A: Supplemental material

Optimal calibration scalings and shifts

Let f denote the objective function in (9). Firstly, setting the partial
derivative of f with respect to βi equal to 0 we have:

∂ f
∂βi

= 2
N

∑
j=1

(
αipT

j vi +βi − x j,i
)
= 0.

Solving for βi yields (11):

βi = x̄i −
αi

N

N

∑
j=1

pT

j vi.

Secondly, setting the partial derivative of f with respect to αi
equal to 0 we have:

∂ f
∂αi

= 2
N

∑
j=1

(
αipT

j vi +βi − x j,i
)
pT

j vi = 0.

Simplifying and incorporating the expression for βi we have:

αi

N

∑
j=1

(pT

j vi)
2+

(

x̄i −
αi

N

N

∑
j=1

pT

j vi

)(
N

∑
j=1

pT

j vi

)

−
N

∑
j=1

x j,i(pT

j vi)= 0.

Finally, solving for αi yields (10):

αi =

N

∑
j=1

x j,i(pT

j vi)− x̄i

N

∑
j=1

pT

j vi

N

∑
j=1

(pT

j vi)
2 −

1
N

(
N

∑
j=1

pT

j vi

)2 .

Identical approximation accuracy for OSC and ARA when
applying CAL

Proposition 1 Consider applying CAL on an OSC plot with matrix
V⊥, and an ARA plot with matrix V. If V⊥ and V span the same
subspace (i.e., if R(V)=R(V⊥)), the estimates x̂ j,i =αi(pT

j vi)+βi
are identical in both plots, where vi denotes the i-th axis vector in
either method.

Proof The proposition holds since the dot products pT

j vi are the
same in both methods, which also implies that CAL will find iden-
tical values of αi and βi for a given data set X. The values pT

j vi are
the entries of the vector of dot products Vp, which is the orthogonal
projection of the data sample x j onto R(V), and therefore identical
in both methods.
For example, in ARA we have:

Vp = V(VTV)−1VTx,

while in OSC:

V⊥p = V⊥VT

⊥ x = V⊥(VT

⊥ V⊥)
−1VT

⊥ x.

Recall that A(ATA)−1ATx is the orthogonal projection of x onto
R(A). Since we have assumed that R(V) = R(V⊥) it follows that
Vp = V⊥p.

Solutions for optimal axes

In this section we show that the solutions to (13) are given by (14)
and (15).

Firstly, the objective function in (13) can be rewritten as:

fi(vi,γi) =
N

∑
j=1

(
pT

j vi + γi − x j,i
)2

= ‖Pvi + γi1−xi‖
2

= (Pvi + γi1−xi)
T(Pvi + γi1−xi)

= vT

i PTPvi −2vT

i PTxi +2γivT

i PT1

+Nγ2
i −2γixT

i 1+xT

i xi,

where P is the N ×2 matrix of plotted points (not necessarily cen-
tered), 1 is a vector of N ones, and xi is the N-dimensional vector
of attribute values for the i-th data variable.

The partial derivatives with respect to γi and vi are:

∂ fi
∂γi

=−2vT

i PT1+2Nγi +2xT

i 1, (23)

and

∂ fi
∂vi

= 2PTPvi −2PTxi −2γiPT1. (24)

Setting (23) to 0 yields:

γi =
1
N
(xT

i −vT

i PT)1 =
1
N

1T(xi −Pvi)

=
1
N

N

∑
j=1

(
x j,i −pT

j vi
)
= x̄i −

1
N

N

∑
j=1

pT

j vi. (25)

Substituting the expression for γi in (24) and setting the partial
derivative to 0 yields:

PTPvi −PTxi −
1
N

1T(Pvi −xi)PT1 = 0.

Since 1TPvi and 1Txi are scalars we can write the equation as:

PTPvi −PTxi −
1
N

PT11TPvi +
1
N

PT11Txi = 0,

PT(I−
1
N

11T)Pvi = PT(I−
1
N

11T)xi,

where I is the N ×N identity matrix. Additionally, I− (1/N)11T is
the well-known “centering” matrix, which is symmetric and idem-
potent. Thus, we can rewrite the previous equation as:

PT

c Pcvi = PT

c xi,

where Pc = (I− (1/N)11T)P is the centered version of P (i.e., its
column sums are 0). Also, note that the data samples can also be
centered, in which case the embedded points of any linear transfor-
mation will also be centered. Finally, assuming Pc has rank 2 we
have:

vi = (PT

c Pc)
−1PT

c xi = P†
cxi.
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Identical approximation accuracy for SC, OSC, and ARA
when applying OPT

Proposition 2 Let X represent an N × n data matrix, V an n× 2
matrix of full column rank, and M a 2 × 2 invertible matrix. In
addition, let P denote the N×2 matrix that is the result of mapping
the N data samples of X linearly onto a plane through the matrix
VM. In other words:

P = XVM. (26)

Furthermore, let V∗ = P†X denote a matrix of enhanced axis vec-
tors as defined in (16). Finally, let PVT

∗ represent approximations
of data samples in X by projecting the N embedded points in P
orthogonally onto the enhanced axes, as defined in biplots or ARA
plots (i.e., the approximations are the dot products between the em-
bedded points and the enhanced axis vectors). In that case, the ap-
proximations PVT

∗ do not depend on M.

Proof Firstly, V∗ = P†X = [XVM]†X. Thus, we can express the
approximations as:

PVT

∗ = XVM(MTVTXTXVM)−1MTVTXTX.

Since (AB)−1 = B−1A−1 for m×m invertible square matrices A
and B, we can rewrite the approximations as:

PVT

∗ = XVMM−1(VTXTXV)−1(MT)−1MTVTXTX
= XV(VTXTXV)−1VTXT = (XV)(XV)†X.

Thus, they do not depend on matrix M.

Corollary 1 Let X represent an N×n data matrix, V an n×2 matrix
of full column rank, and V⊥ and orthogonal matrix with the same
range as V. In addition, consider mapping the data samples in X
onto a plane with SC, ARA and OSC, through (2), (7), and (3),
respectively. The approximations of X resulting from projecting the
embedded points orthogonally onto enhanced labeled axes, as they
are defined in biplots or ARA plots, and which are obtained through
(16), are identical for the three methods.

Proof The mappings for SC, ARA and OSC all have the form in
(26). In particular, for SC M = I, for ARA M = (VTV)−1, and
for OSC M = B, where V⊥ = VB. Therefore, due to Prop. 2, the
approximations when using the enhanced axes are identical for the
three methods.

Solution for θ ∗

We now show that the solution to (17) is given by (18). Firstly,
recall that P = XV is the set of embedded points prior to perform-
ing the scaling by θ , and Pc = CXV contains the corresponding
centered points, where C = I − (1/N)11T is the symmetric and
idempotent centering matrix. Similarly, we denote the set of em-
bedded points after performing the scaling as Pθ = θXV, while
Pθ

c = θCXV is its centered version.

The objective function of the optimization problem can be writ-

ten as:

f (θ) = ‖θV−Vθ
∗ ‖

2
F = ‖θVT− (Pθ

c )
†X‖2

F

= ‖θVT− (θCXV)†X‖2
F

= ‖θVT− (θ 2VTXTC2XV)−1θVTXTCX‖2
F

= ‖θVT−
1
θ

P†
cX‖2

F = ‖θVT−
1
θ

VT

∗ ‖
2
F

= tr

[(

θVT−
1
θ

VT

∗

)
T
(

θVT−
1
θ

VT

∗

)]

= θ 2tr(VTV)−2tr(VT

∗V)+
1

θ 2 tr
(
VT

∗V∗
)

= θ 2‖V‖2
F −2tr(VT

∗V)+
1

θ 2 ‖V∗‖
2
F,

where tr denotes the trace of a matrix. Setting its derivative equal
to zero yields:

f ′(θ) = 2θ‖V‖2
F −

2
θ 3 ‖V∗‖

2
F = 0.

Finally, solving for θ we have:

θ∗ = 4

√

‖V∗‖2
F

‖V‖2
F

=

√

‖V∗‖F

‖V‖F
.

Relationship between accuracy and axis vector length in ARA

There is a direct relationship between approximation accuracy and
axis vector length in ARA plots. Since integers on the i-th line axis
are located at multiples of 1/‖vi‖, they appear closer to each other
for larger axis vectors. This implies that a variation in p in the direc-
tion of a large axis vector will cause a larger approximation error
for the variable. Thus, the method will primarily focus on mini-
mizing the approximation errors for variables with larger axis vec-
tors. In Fig. 9 we illustrate this effect by comparing an initial ARA
plot to another in which we have enlarged one axis vector. The ex-
ample is based on the standardized Breakfast cereal data set used
in [YMSJ05], but have labeled the axes with original data values. In
this case, when an axis vector associated with Calories is stretched
the plotted points appear more compacted in the direction of the
axis (in SC the effect would be the opposite). Furthermore, the
corresponding approximations are more accurate. Thus, the plotted
points appear better ordered in the direction of the axis, as can be
seen through the color coding of the dots, which represents caloric
content.

c© 2021 The Author(s)
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Figure 9: Direct relationship between accuracy and axis vector
length in ARA plots. In this example the only difference between the
ARA plots in (a) and (b) is that the axis vector associated with the
variable Calories is longer in the latter. This compresses the plotted
points along the direction of the axis in (b), and improves the ap-
proximation accuracy for Calories. In particular, observe (through
the color coding) that the points appear better ordered with respect
to caloric content along the direction of the axis.

Decomposition of the estimation errors εi

The objective function in (13), denoted here as εi can be rewritten
as follows:

εi =
N

∑
j=1

(
pT

j v∗i + γ∗i − x j,i
)2

= ‖Pv∗i +1γ∗i −xi‖
2

=

∥
∥
∥
∥

PP†
cxi +1

(
1
N

1Txi −
1
N

1TPP†
cxi

)

−xi

∥
∥
∥
∥

2

=

∥
∥
∥
∥
(I−

1
N

11T)PP†
cxi − (I−

1
N

11T)xi

∥
∥
∥
∥

2

= ‖(PcP†
c −C)xi‖

2

= xT

i (PcP†
c −C)T(PcP†

c −C)xi

= xT

i (C−PcP†
c)xi = xT

i Cxi −xT

i PcP†
cxi

= Nσ2
i −xT

i CPcP†
cCxi

= Nσ2
i −xT

c,iPcP†
cxc,i.

PSfrag replacements
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Figure 10: In RadViz increasing the value of a data variable causes
the plotted points to move towards the anchor point v associated
with the variable. On average we assume that we should expect to
find greater values for the variable in the direction (d) from the
origin towards v.
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Figure 11: Histograms of Pearson correlations (r) between the
length of an optimal axis vector and the estimation error, and the
variance, of the associated variable, for the data used in the Rad-
Viz example in Sec. 3.2.4. The variables were first normalized to lie
in [0,1], and afterwards for each sample we divided each attribute
by the sum of all of the attributes. Since each variable has a differ-
ent variance, ‖vi‖ is usually positively correlated with σ 2

i , but not
necessarily with εi.

Effect of increasing an attribute in RadViz

Figure 10 shows the effect of increasing an attribute value in Rad-
Viz. The plotted point moves towards the anchor associated with
the corresponding variable. We assume that on average the data
values for a variable should increase in the direction (d) from the
origin to the anchor point v.

Correlations related to ‖vi‖ for the RadViz example

In the RadViz example (see Sec. 3.2.4) the length of the opti-
mal vectors predominantly reflects the variance of the variables. In
Fig. 11 we show distributions of correlations between ‖vi‖, and εi
and σ2

i , for the 7!/2 different orderings of the eight variables (dis-
carding rotations and reflections). The vector lengths usually have
a strong positive correlation with the variable variances. In this ex-
ample the variance for Palmitic is 0.0009, which is at least twice as
small as the rest of the variances, which explains the short length
of the Palmitic axis vector in Fig. 6.
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Discarding offset shifts in the objective functions

The objective functions of the optimization problems considered in
this paper have the following form:

f = ‖PVT−X+1δT‖2
F, (27)

where the variables related to the axis vectors appear in V and P.
Also, assume V, P, and δ are or contain optimal solutions. In that
case δ is (see the derivation of (25)):

δ = x̄−Vp̄ =−(VW− I)x̄,

where x̄ and p̄ are the mean of the data and plotted points, respec-
tively. Additionally, W = VT for SC, and W = V† for ARA. Sub-
stituting in (27) we can rewrite the objective function as:

f = ‖VPT−XT+δ1T‖2
F

= ‖VWXT−XT− (VW− I)x̄1T‖2
F

= ‖(VW− I)XT− (VW− I)x̄1T‖2
F

= ‖(VW− I)(XT− x̄1T)‖2
F.

If we apply a translation s to the data, the new data matrix would
become X+1sT, while the new mean would be x̄− s. In that case,
f would not change:

f = ‖(VW− I)(XT+ s1T− (x̄− s)1T)‖2
F

= ‖(VW− I)(XT− x̄1T)‖2
F.

Thus, we obtain the same value for the objective function using
centered data:

f = ‖WVT−Xc +1δT‖2
F.

However, for centered data δT = 0. Thus, the optimum value of the
objective function is:

f = ‖WVT−Xc‖
2
F,

which implies that we obtain the same optimum axis vectors (as in
(27)) solving the optimization problems on centered data but dis-
carding the term involving δ .

Optimal scaling of a single axis vector

Table. 2 shows the derivation of the solution to (20) for SC.

Gradient of the objective function in (22) for SC

Table. 3 shows the derivation of the gradient of the objective func-
tion ( f ) in (22) for SC.
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The objective function in (20) for SC can be rewritten as follows:

P(λ ) =
N

∑
j=1

∥
∥
∥
∥

[
Ṽ

λvn

]

p j −x j

∥
∥
∥
∥

2
=

N

∑
j=1

∥
∥
∥
∥
∥

[
Ṽ

λvn

][
Ṽ

λvn

]
T

x j −x j

∥
∥
∥
∥
∥

2

=
N

∑
j=1

∥
∥
∥
∥

[
ṼṼT λ Ṽvn

λvT

n ṼT λ 2vT

n vn

]

x j −x j

∥
∥
∥
∥

2

=
N

∑
j=1

∥
∥
∥
∥

([
ṼṼT λ Ṽvn

λvT

n ṼT λ 2vT

n vn

]

− I
)

x j

∥
∥
∥
∥

2

=
N

∑
j=1

∥
∥
∥
∥

[
ṼṼT− I λ Ṽvn
λvT

n ṼT λ 2vT

n vn −1

]

x j

∥
∥
∥
∥

2

=
N

∑
j=1

xT

j

[
ṼṼT− I λ Ṽvn
λvT

n ṼT λ 2vT

n vn −1

]2

x j

=
N

∑
j=1

[
x̃T

j x j,n
]
[

(ṼṼT− I)(ṼṼT− I)+λ 2ṼvnvT

n ṼT λ (ṼṼT− I)Ṽvn +λ 3ṼvnvT

n vn −λ Ṽvn
λvT

n ṼT(ṼṼT− I)+λ 3vT

n vnvT

n ṼT−λvT

n ṼT λ 2vT

n ṼTṼvn +λ 4(vT

n vn)
2 −2λ 2vT

n vn +1

][
x̃ j

x j,n

]

=
N

∑
j=1

(

x̃T

j (ṼṼT− I)(ṼṼT− I)x̃ j +λ 2x̃T

j ṼvnvT

n ṼTx̃ j +λ x̃T

j (ṼṼT− I)Ṽvnx j,n +λ 3x̃T

j ṼvnvT

n vnx j,n −λ x̃T

j Ṽvn

+λx j,nvT

n ṼT(ṼṼT− I)x̃ j +λ 3x j,nvT

n vnvT

n ṼTx̃ j −λx j,nvT

n ṼTx̃ j +λ 2x j,nvT

n ṼTṼvnx j,n +λ 4(vT

n vnx j,n)
2 −2λ 2x j,nvT

n vnx j,n + x2
j,n

)

=
N

∑
j=1

(

λ 4(vT

n vnx j,n)
2 + 2λ 3x̃T

j ṼvnvT

n vnx j,n + λ 2(x̃T

j ṼvnvT

n ṼTx̃ j +(vT

n ṼTṼvn −2vT

n vn)x2
j,n
)

+2λ x̃T

j (ṼṼT−2I)Ṽvnx j,n + x̃T

j (ṼṼT− I)(ṼṼT− I)x̃ j + x2
j,n

)

.

Differentiating the polynomial yields:

P′(λ ) = 4λ 3
N

∑
j=1

(vT

n vnx j,n)
2 + 6λ 2

N

∑
j=1

x̃T

j ṼvnvT

n vnx j,n + 2λ
N

∑
j=1

(
x̃T

j ṼvnvT

n ṼTx̃ j +(vT

n ṼTṼvn −2vT

n vn)x2
j,n
)
+ 2

N

∑
j=1

x̃T

j (ṼṼT−2I)Ṽvnx j,n.

Table 2: Derivation of the solution to (20) for SC.
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Firstly, the objective function in (22) for SC can be rewritten as follows:

fSC(vn) =
N

∑
j=1

∥
∥
∥
∥

[
Ṽ
vT

n

]

p j −x j

∥
∥
∥
∥

2

=
N

∑
j=1

∥
∥
∥
∥

[
Ṽ
vT

n

]
[
ṼTvn

]
x j −x j

∥
∥
∥
∥

2

=

∥
∥
∥
∥

[
Ṽ
vT

n

]
[
ṼTvn

]
XT−XT

∥
∥
∥
∥

2

F
=

∥
∥
∥
∥

([
Ṽ
vT

n

]
[
ṼTvn

]
− I
)

XT

∥
∥
∥
∥

2

F
,

where I is the n×n identity matrix. Furthermore, we can express [ṼTvn] as follows:

[ṼTvn] = VT∆+vnζT, (28)

where ∆ is an n×n diagonal matrix whose entries are all 1, except its n-th component, which is 0. Also, ζ is a n×1 vector whose components
are all 0, except its n-th entry, which is 1. We will use (28) to rewrite fSC(vn) as follows:

fSC(vn) =
∥
∥
[
(∆V+ζ vT

n )(V
T∆+vnζT)− I

]
XT
∥
∥2

F =
∥
∥
[
(∆VVT∆+∆VvnζT+ζ vT

n VT∆+ζ vT

n vnζT

︸ ︷︷ ︸

E

)− I
]
XT
∥
∥2

F.

Expressing the Frobenius norm as a trace yields (note that matrix the n×n matrix E is symmetric):

fSC(vn) = tr
[
X(E− I)2XT

]
= tr

[
X(E2 −2E+ I)XT

]
= tr

[
XE2XT

]
−2tr

[
XEXT

]
+ tr
[
XXT

]
. (29)

The last term in (29) does not depend on vn and is therefore irrelevant for the gradient. Thus, we will proceed by expanding the first two
terms, using the following identities:

∆2 = ∆, ζTζ = 1, ∆ ·ζ = 0, VT∆V = ṼTṼ, X∆V = X̃Ṽ, and Xζ = xn,

where X̃ is the matrix composed of the first n−1 columns of X, and xn is the n-th column of X.
Firstly,

−2tr[XEXT] =−2tr[X∆VVT∆XT]−4tr[Xζ vT

n VT∆XT]−2tr[Xζ vnvT

n ζTXT] =−2tr[X̃ṼṼTX̃T]−4tr[xnvT

n ṼTX̃T]−2tr[xnvnvT

n xT

n ]

=−2tr[X̃ṼṼTX̃T]−4tr[vT

n ṼTX̃Txn]−2tr[xT

n xnvnvT

n ] =−2tr[X̃ṼṼTX̃T]−4vT

n a−2xT

n xnvT

n vn, (30)

where a = ṼTX̃Txn. Also, note that the first term does not depend on vn and is therefore irrelevant for the gradient.
Secondly, we proceed by expanding tr[XE2XT]. Since E has four terms, E2 has 16, but eight of them cancel due to ∆ · ζ = 0. Also, some
terms appear twice. In particular, we have:

tr[XE2XT] = tr[X∆VVT∆2VVT∆XT]+2tr[Xζ vT

n VT∆2VVT∆XT]+ tr[X∆VvnζTζ vT

n VT∆XT]

+ tr[ζ vT

n VT∆2VvnζT]+2tr[Xζ vT

n vnζTζ vT

n VT∆XT]+ tr[Xζ vT

n vnζTζ vT

n vnζTXT]

= tr[X̃ṼṼTṼṼTX̃T]+2tr[xnvT

n ṼTṼṼTX̃T]+ tr[X̃ṼvnvT

n ṼTX̃T]+ tr[xnvT

n ṼṼTvnxT

n ]+2tr[xnvT

n vnvT

n ṼTX̃T]+ tr[xnvT

n vnvT

n vnxT

n ]

= tr[X̃ṼṼTṼṼTX̃T]+2tr[vT

n ṼTṼṼTX̃Txn]+ tr[vT

n ṼTX̃TX̃Ṽvn]+xT

n xntr[vT

n ṼṼTvn]+2tr[vT

n vnvT

n ṼTX̃Txn]+xT

n xntr[vT

n vnvT

n vn]

= tr[X̃ṼṼTṼṼTX̃T]+2tr[vT

n Da]+ tr[vT

n Cvn]+xT

n xntr[vT

n Dvn]+2tr[vT

n vnvT

n a]+xT

n xntr[vT

n vnvT

n vn]

= tr[X̃ṼṼTṼṼTX̃T]+2(vT

n Da)+vT

n Cvn +xT

n xn(vT

n Dvn)+2(vT

n vnvT

n a)+xT

n xn(vT

n vn)(vT

n vn), (31)

where D = ṼTṼ, and C = ṼTX̃TX̃Ṽ, which are both symmetric.
Substituting (30) and (31) in (29) we have:

fSC(vn) =−4vT

n a−2xT

n xnvT

n vn +2vT

n Da+vT

n Cvn +xT

n xnvT

n Dvn +2vT

n vnvT

n a+xT

n xnvT

n vnvT

n vn

+ tr[XXT]−2tr[X̃ṼṼTX̃T]+ tr[X̃ṼṼTṼṼTX̃T],

where the terms involving traces do not depend on vn and are therefore irrelevant for computing the gradient of the function.
Finally, taking the derivative with respect to vn yields:

∇ fSC(vn) =−4a−4xT

n xnvn +2Da+2Cvn +2xT

n xnDvn +4vnvT

n a+2vT

n vna+4xT

n xnvnvT

n vn

= 2Cvn +2vT

n vna+
(
2D−4I+4vnvT

n
)(

a+xT

n xnvn
)
,

where we have used the following rules:

∂xTb
∂x

= b,
∂xTAx

∂x
= (A+AT)x,

∂xTxxTb
∂x

= 4xxTb+2xTxb, and
∂xTxxTx

∂x
= 4xxTx,

where x,b ∈ R
n, and A ∈ R

n×n.

Table 3: Derivation of the gradient of the objective function in (22) for SC.
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