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Abstract. Identifying differences among the distribution of samples
of different observations is an important issue in many research fields.
We provide a general framework to detect these difference spots in d-
dimensional feature space. Such spots occur not only at various loca-
tions, they may also come in various shapes and multiple sizes, even at
the same location. We address these challenges by a scale-space repre-
sentation of the density function difference of the observations in feature
space. Using three classification scenarios from UCI Machine Learning
Repository we show that interest spots carry valuable information about
a data set. To this end, we establish a simple decision rule on top of our
framework. Results indicate state-of-the-art performance, underpinning
the importance of the information that is carried by the detected spots.
Furthermore, we outline that the output of our framework can be used
to guide exploratory visualization of high-dimensional feature spaces.
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1 Introduction

Sooner or later a large portion of pattern recognition tasks come down to the
question What makes X different from Y 2 Some scenarios of that kind are:

Detection of forged money based on image-derived features: What makes
some sort of forgery different from genuine money?

Comparison of medical data of healthy and non-healthy subjects for
disease detection: What makes the healthy different from the non-healthy?
Comparison of document data sets for text retrieval purposes: What
makes this set of documents different from another set?

Apart from this, spotting differences in two or more observations is of interest
in fields of computational biology, chemistry or physics. Looking at it from a
general perspective, such questions generalize to

What makes samples of group X different from the samples of group Y ?
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This question usually arises when we deal with grouped samples in some feature
space. For humans, answering such questions tends to become more challenging
with increasing number of groups, samples and feature space dimensions, up to
the point where we miss the forest for the trees. This complexity is not an issue
to automatic approaches, which, on the other hand, tend to either overfit or
underfit patterns in the data. Therefore, semi-automatic approaches are needed
to generate a number of interest spots which are to be looked at in more detail.

We address this issue by a scale-space difference detection framework. Our
approach relies on the density difference of group samples in feature space. This
enables us to identify spots where one group dominates the other. We draw on
kernel density estimators to represent arbitrary density functions. Embedding
this into a scale-space representation, we are able to detect spots of different
sizes and shapes in feature space in an efficient manner. Our framework:

— applies to d-dimensional feature spaces

— is able to reflect arbitrary density functions
selects optimal spot locations, sizes and shapes
is robust to outliers and measurement errors
produces human-interpretable results

Please note that large portions of the subsequent content were already cov-
ered in our previous work [16]. Within the current work we go into detail on a
second spot detector (complementing the one used previously), provide an ex-
tended evaluation and show how the output of our framework can be used to
guide the exploratory visualization of high-dimensional feature spaces. The lat-
ter may be seen as an intermediate step prior to applying other means of data
analysis to the identified interest spots.

Our presentation is structured as follows. We outline the key foundations of
our framework in Section 2. The specific parts of our framework are detailed in
Section 3, while Section 4 outlines our contribution to exploratory visualization.
Section 5 comprises our results on several data sets from UCI Machine Learn-
ing Repository. In Section 6, we close with a summary of our work, our most
important results and an outline of future work.

2 Theoretical Foundations

Searching for differences between the sample distribution of two groups of ob-
servations g and h, we, quite naturally, seek for spots where the density function
f9(x) of group g dominates the density function f”(x) of group h, or vice versa.
Hence, we try to find positive-/negative-valued spots of the density difference

FIMx) = f9(x) = fM(x) (1)

w.r.t. the underlying feature space R? with x € R?. Such spots may come in
various shapes and sizes. A difference detection framework should be able to
deal with these degrees of freedom. Additionally, it must be robust to various
sources of error, e.g. from measurement, quantization and outliers.
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We propose to superimpose a scale-space representation to the density dif-
ference f97"(x) to achieve the above-mentioned properties. Scale-space frame-
works have been shown to robustly handle a wide range of detection tasks for
various types of structures, e.g. text strings [23], persons and animals [8] in
natural scenes, neuron membranes in electron microscopy imaging [20] or mi-
croaneurysms in digital fundus images [2]. In each of these tasks the function of
interest is represented through a grid of values, allowing for an explicit evaluation
of the scale-space. However, an explicit grid-based approach becomes intractable
for higher-dimensional feature spaces.

In what follows, we show how a scale-space represenation of f9~"(x) can be
obtained from kernel density estimates of f9(x) and f"(x) in an implicit fashion,
expressing the problem by scale-space kernel density estimators. Note that by
the usage of kernel density estimates our work is limited to feature spaces with
dense filling. We close with a brief discussion on how this can be used to compare
observations among more than two groups.

2.1 Scale Space Representation

First, we establish a family 197" (x;¢) of smoothed versions of the densitiy dif-
ference 197" (x). Scale parameter ¢ > 0 defines the amount of smoothing that is
applied to 197" (x) via convolution with kernel k;(x) of bandwidth t as stated in

PR (x5 t) = ke(x) % 77" (x). (2)

For a given scale ¢, spots having a size of about 2/t will be highlighted, while
smaller ones will be smoothed out. This leads to an efficient spot detection
scheme, which will be discussed in Section 3. Let

(x;1) = ki (x) * f7(x) 3)
1" (x;t) = ke(x) * f"(x) (4)
be the scale-space representations of the group densities f9(x) and f"(x). Look-

ing at Equation 2 more closely, we can rewrite (97" (x;t) equivalently in terms
of 19(x;t) and I"(x;t) via Equation 3 and 4. This reads

7" (xit) = k(%) * 97" (x) ()
= Ky (x) * [f9(x) — f*(x)] (6)
= Ky (x) * f9 (%) — ke(x) * f" (x) (7)
= 19(x;t) — I"(x;1). (8)

The simple yet powerful relation between the left and the right-hand side
of Equation 8 will allow us to evaluate the scale-space representation 19" (x)
implicitly, i.e. using only kernel functions. Of major importance is the choice of
the smoothing kernel k;(x). According to scale-space axioms, k;(x) should suffice
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a number of properties, resulting in the uniform Gaussian kernel of Equation 9
as the unique choice, cf. 3, 24].

1(0) = exp - xx ) (9)

2.2 Kernel Density Estimation

In kernel density estimation, the group density f9(x) is estimated from its n?
samples by means of a kernel function Kpgs(x). Let x € R with i =1,...,n9
being the group samples. Then, the group density estimate is given by

ng

fo0 = - 3" Koo (x = x). (10)

Parameter B9 € R4*? is a symmetric positive-definite matrix, which controls the
sample influence to the density estimate. Informally speaking, Kgs(x) applies a
smoothing with bandwidth B9 to the “spiky sample relief” in feature space.

Plugging kernel density estimator f9(x) into the scale-space representation
19(x;t) defines the scale-space kernel density estimator 19(x;t) to be

19(x;t) = ke(x) % f9(x). (11)

Inserting Equation 10 into the above, we can trace down the definition of the
scale-space density estimator [9(x;t) to the sample level via transformation

19(x;t) = ky(x) % f9(x) (12)

— hy(x) + [nlg 3" Kpo (x - xg)] (13)
=1

nd
1

= — > (ke * Kpa) (x — ). (14)

nJ <
=1

Though arbitrary kernels can be used, we choose Kg(x) to be a Gaussian
kernel @ (x) due to its convenient algebraic properties. This (potentially non-
uniform) kernel is defined as

Pp(x) = ( Lt > (15)
B(X) = ———exp | —=x X |.
V/det(27B) 2

Using the above, the right-hand side of Equation 14 simplifies further because
of the Gaussian’s cascade convolution property. Eventually, the scale-space kernel
density estimator [9(x; ) is given by Equation 16, where I € R%*? is the identity.

n9

A 1

(i) = — > Bayme (x —x) (16)
1=1
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Using this estimator, the scale-space representation 19(x;t) of group density
f9(x) and analogously that of group h can be estimated for any (x;t) in an
implicit fashion. Consequently, this allows us to estimate the scale-space repre-
sentation 197" (x;t) of the density difference f9~"(x) via Equation 7 by means
of kernel functions only.

2.3 Bandwidth Selection

When regarding bandwidth selection in such a scale-space representation, we see
that the impact of different choices for bandwidth matrix B vanishes as scale ¢
increases. This can be seen when comparing matrices tI + 0 and ¢I + B where
0 represents the zero matrix, i.e. no bandwidth selection at all. We observe
that relative differences between them become neglectable once |[tI|| > ||B]|.
This is especially true for large sample sizes, because the bandwidth will then
tend towards zero for any reasonable bandwidth selector anyway. Hence, we may
actually consider setting B to 0 for certain problems, as we typically search for
differences that fall above some lower bound for ¢.

Literature bares extensive work on bandwidth matrix selection, for exam-
ple, based on plug-in estimators [6,21] or biased, unbiased and smoothed cross-
validation estimators [7,19]. All of these integrate well with our framework.
However, in view of the argument above, we propose to compromise between a
full bandwidth optimization and having no bandwidth at all. We define BY = 91
and use an unbiased least-squares cross-validation to set up the bandwidth es-
timate for group g. For Gaussian kernels, this leads to the optimization of 17,
cf. [7], which we achieved by golden section search over b9.

n? n9
1

1
arg min + Bopo — 28gs) (x7 — %9 17
ng n9y/det(4rB9) n9(nd —1) ;;( 2B Bs) (] 7)) (1)

J#i

2.4 Multiple Groups

If differences among more than two groups shall be detected, we can reduce the
comparison to a number of two-group problems. We can consider two typical use
cases, namely one group vs. another and one group vs. rest. Which of the two is
more suitable depends on the specific task at hand. Let us illustrate this using two
medical scenarios. Assume we have a number of groups which represent patients
having different diseases that are hard to discriminate in differential diagnosis.
Then we may consider the second use case, to generate clues on markers that
make one disease different from the others. In contrast, if these groups represent
stages of a disease, potentially including a healthy control group, then we may
consider the first use case, comparing only subsequent stages to give clues on
markers of the disease’s progress.
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3 Detection Framework

To identify the positve-/negative-valued spots of a density difference, we apply
the concept of blob detection, which is well-known in computer vision, to the
scale-space representation derived in Section 2. In scale-space blob detection,
some blobness criterion is applied to the scale-space representation, seeking for
local optima of the function of interest w.r.t. space and scale. This directly leads
to an efficient detection scheme that identifies a spot’s location and size. The
latter corresponds to the detection scale.

In a grid-representable problem we can evaluate blobness densely over the
scale-space grid and identify interesting spots directly using the grid neighbor-
hood. This is intractable here, which is why we rely on a more refined three-
stage approach. First, we trace the local spatial optima of the density difference
through scales of the scale-space representation. Second, we identify the inter-
esting spots by evaluating their blobness along the dendrogram of optima that
was obtained during the first stage. Having selected spots and therefore knowing
their locations and sizes, we finally calculate an elliptical shape estimate for each
spot in a third stage.

Spots obtained in this fashion characterize elliptical regions in feature space
as outlined in Figure 1. The representation of such regions, i.e. location, size
and shape, as well as its strength, i.e. its scale-space density difference value,
are easily interpretable by humans, which allows to look at them in more detail
using some other method. The elliptical nature of the identified regions is also a
limitation of our work, because non-elliptical regions may only be approximated
by elliptical ones. We now give a detailed description of the three stages.

(a) “Isometric” View (b) Top View

Fig. 1. Detection results for a two-group (red/blue) problem in two-dimensional fea-
ture space (xy-plane) with augmented scale dimension s; Red squares and blue circles
visualize the samples of each group; Red/blue paths outline the dendrogram of scale-
space density difference optima for the red/blue group dominating the other group;
Interesting spots of each dendrogram are printed thick; Red/blue ellipses characterize
the shape for each of the interest spots
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3.1 Scale Tracing

Assume we are given an equidistant scale sampling, containing non-negative
scales t1, ..., t, in increasing order and we search for spots where group g dom-
inates h. More precisely, we search for the non-negatively valued maxima of
197" (x;t;_1). The opposite case, i.e. group h dominates g, is equivalent.

Let us further assume that we know the spatial local maxima of the density
difference 197" (x;t;_1) for a certain scale ¢;_; and we want to estimate those
of the current scale ¢;. This can be done taking the previous local maxima as
initial points and optimizing each w.r.t. 197" (x; ;). In the first scale, we take the
samples of group g themselves. As some maxima may be converged to the same
location, we merge them together, feeding unique locations as initials into the
next scale t;41 only. We also drop any negatively-valued locations as these are
not of interest to our task. They will not become of interest for any higher scale
either, because local extrema will not enhance as scale increases, cf. [13]. Since
derivatives are simple to evaluate for Gaussian kernels, we can use Newton’s

method for spatial optimization. We can assemble gradient {%lg*h(x; t) and

. 2 — . .
Hessian 6x(?9xT 197" (x;t) sample-wise using

0

&QB(X) = —Pp(x) B 'x and (18)
axaw Pp(x) = Pp(x) (B™'xx'B~ ~B™"). (19)

Iterating this process through all scales, we form a discret dendrogram of
the maxima over scales. A dendrogram branching means that a maxima formed
from two (or more) maxima from the preceding scale.

3.2 Spot Detection

The maxima of interest are derived from a scale-normalized blobness criterion
¢y(x;t). Two main criteria, namely the determinant of the Hessian [5] given in
Equation 20! and the trace of the Hessian [13] given in Equation 22 have been
discussed in literature. In contrast to our previous work [16], we do not focus on
a single criterion. Instead, we will later investigate both in comparison.

S (s t) = 7 (=1)"det ( aXG;XT e t>) (20)
= d 3 (x; 1) (21)

S (xt) = O (<1t ( GX%QXT s t>) (22)
— rd A (x;t) (23)

! (=1)? leads to a consistent criterion for even and odd dimensions.
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Because the maxima are already spatially optimal, we can search for spots that
maximize c,(x;t) w.r.t. the dendrogram neighborhood only. Note that we do
not require the superscript because the remained is independent of the choice
of the blobness criterion. Parameter v > 0 can be used to introduce a size bias,
shifting the detected spot towards smaller or larger scales. The definition of ~y
highly depends on the type of spot that we are looking for, cf. [12]. This is
impractical when we seek for spots of, for example, small and large skewness or
extreme kurtosis at the same time.

Addressing the parameter issue, we search for all spots that maximize ¢ (x;t)
locally w.r.t. some v € [0,00). Some dendrogram spot s with scale-space coordi-
nates (xs;ts) is locally maximal if there exists a y-interval such that its blobness
¢ (Xs;ts) is larger than that of every spot in its dendrogram neighborhood N (s).
This leads to a number of inequalities, which can be written as

tzdc(xs; ts) Vn;\/(s) t;{dc(xn; tn) or (24)
tS n; tn
vdlog— > logL). (25)

tn VneN(s) C(xs; ts)

The latter can be solved easily for the ~v-interval, if any. We can now identify
our interest spots by looking for the maxima along the dendrogram that locally
maximize the width of the y-interval. More precisely, let w.(xs;ts) be the width
of the «-interval for dendrogram spot s, then s is of interest if the dendrogram
Laplacian of w.,(x;t) is negative at (xs;ts), or equivalently, if

1
w. (X5 ts) > el ngv:@ Wy (X tn)- (26)

Intuitively, a spot is of interest if its v-interval width is above neighborhood
average. This is the only assumption we can make without imposing limitations
on the results. Interest spots indentified in this way will be dendrogram segments,
each ranging over a number of consecutive scales.

3.3 Shape Adaption

Shape estimation can be done in an iterative manner for each interest spot. The
iteration alternatingly updates the current shape estimate based on a measure of
anisotropy around the spot and then corrects the bandwidth of the scale-space
smoothing kernel according to this estimate, eventually reaching a fixed point.
The second moment matrix of the function of interest is typically used as an
anisotropy measure, e.g. in [14] and [15]. Since it requires spatial integration
of the scale-space representation around the interest spot, this measure is not
feasible here.

We adapted the Hessian-based approach of [10] to d-dimensional problems.
The aim is to make the scale-space representation isotropic around the inter-
est spot, iteratively moving any anisotropy into the symmetric positive-definite
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shape matrix S € R%*? of the smoothing kernel’s bandwidth ¢S. Thus, we lift the

problem into a generalized representation 197" (x;tS) of anisotropic scale-space

kernels, which requires us to replace the definition of ¢;(x) by that of &g (x).
Starting with the isotropic S; = I, we decompose the current Hessian via

H? g—h
OxoxT

(-;t8;) = VD*VT (27)

into its eigenvectors in columns of V and eigenvalues on the diagonal of D?. We
then normalize the latter to unit determinant via

D = {/det(D)D (28)

to get a relative measure of anisotropy for each of the eigenvector directions.
Finally, we move the anisotropy into the shape estimate via

Sit1 = (VID#V) s (VD iVT) (29)

and start all over again. Iteration terminates when isotropy is reached. More
precisely: when the ratio of minimal and maximal eigenvalue of the Hessian
approaches one, which usually happens within a few iterations.

4 Exploratory Visualization

As mentioned introductory, exploratory visualization may be a reasonable in-
termediate step prior to directly applying other means of data analysis to the
interest spots. There are plenty of visualization techniques that aim at identifi-
cation of interesting patterns in the distribution of samples in high-dimensional
feature spaces. For this work, we focus on a recent in-house development namely
orthographic star coordinates [11]. We next give a short introduction to the
topic and discuss how outputs of our framework can be used to guide the visual
exploration process.

4.1 Star Coordinate Visualization

Star coordinate visualizations make use of projections from d-dimensional fea-
ture spaces to a two-dimensional projection plane which is then visualized. Such
projections are characterized by a projection matrix P € R2*¢ the columns of
which can be interpreted as d points in two-dimensional space. Modifying these
so-called anchor points is equivalent to manipulation of the projection plane it-
self, which the star coordinate visualization exploits by an interactive interface
like that shown in Figure 2.

In general, star coordinates allow for arbitrary projections thus potentially
introducing arbitrary distortions to the visualization of the high-dimensional
content. This is not desirable for various reasons, therefore [11] proposed to re-
strict the interaction to orthographic projections. Orthography is directly related
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(a) Original View (b) Augmented View (c¢) Focused View

Fig. 2. Exploratory visualization of a three-group (red/green/blue) problem in 4-
dimensional feature space by orthographic star coordinates; Original orthographic star
coordinates (left) augmented with output of our framework (middle) and focused on a
particular interest spot (right); Moveable anchor points are connected to the origin by
thick black line segments; A slider for scale selection is located at the bottom of the
interface; The remaining visual content is discussed in the text

to d-dimensional rotation, enforcing this property thus provides an intuitive way
to “rotate” the high-dimensional content in front of a user’s viewpoint. This di-
rectly targets the human’s ability to interpret spatial relations from a steerable
sequence of projections which is pretty much what we do with two-dimensional
visualizations of three-dimensional content on a daily basis.

4.2 Preserving Orthography

Regarding orthography, we have to address two main issues. First, how to recover
an orthographic projection when starting from an arbitrary projection. Second,
how to reinforce orthography during interactive anchor movement. A sufficient
condition for orthography of some anchor point constellation P, € R2*? is that

PP, T =1, (30)

whereby I € R?*2 is the identity matrix, cf. [11]. Therefore, given an arbitrary
non-orthographic P we may seek to make PPT € R?*2 identity. Since the latter
Gramian matrix is almost certainly positive-definite in practice,? we can obtain
it’s Cholesky factor L € R?*2? and manipulate the decomposition as follows

LLT = PPT (31)
I=L'PP'L " (32)
I-= P, PST (33)

2 Rare semi-definite cases are avoided by regularization PP + €I for some small e.



Density Difference Detection 11

with P, being the recovered orthographic projection.® Regarding the second is-
sue, we can simply take the steps just outlined, continuously reinforcing orthog-
raphy during interactive movement of particular anchors. Note how the anchor
points of the given non-orthographic P are all transformed in the same man-
ner by the (inverse of the) Cholesky factor L to obtain the orthographic anchor
points P,. This avoids any experience of “arbitrariness” during user interaction.

4.3 Guiding Explorations

As already discussed in [11], there are certain open questions associated to star
coordinate visualizations. This includes suitable anchor point constellations, cen-
ters of “rotation”, i.e. the choice of the origin in d-dimensional feature space prior
to projection, as well as a reasonable zoom into the data after projection. Other-
wise put, we need to know where to look at and how. The interest spots detected
by our framework can be used to address these issues, thereby also providing an
interactive mechanism to switch among potentially interesting structures.

As show in Figure 2, we have augmented the star coordinate visualization by
a scale selection slider, letting the user choose the size (scale) of structures he/she
is interested in. Based on his/her selection, the visualization is overlayed with
the output of our framework that corresponds to the selected scale. Specifically,
we transparently visualize the locations of maxima that were found during scale
tracing (see Section 3.1) and their respective shapes, which were estimated during
shape adaption (see Section 3.3). In case a maximum was found interesting (see
Section 3.2), it’s location and shape is highlighted opaquely instead.

When interactively selecting a maxima, the visualization is changed to put
focus on the selection. Specifically, the origin of the d-dimensional feature space
is shifted to the maxima’s location thereby making it the center of “rotation”.
The user can then change the zoom to a multiple of the maxima’s scale by
keyboard bindings if desired. By another binding, he/she may also align the
projection plane with the two most significant axes of the shape estimate to
get a reasonable initial constellation of anchor points. To this end, the unit
eigenvectors that correspond to the two largest eigenvalues of the shape estimate
are used to fill the rows of the projection matrix.

We combined the above with a binding that resets the visualization to just
before focusing a selection which allows to rapidly explore several potentially
interesting spots before the user eventually moves on to differently sized struc-
tures. Changing the scale selection slider steadily, the course of locations and
shapes of the maxima gives an impression on how the data is structured from
coarse to fine without missing any highlighted interest spot.

5 Experiments

We next demonstrate that interest spots carry valuable information about a data
set. Due to the lack of data sets that match our particular detection task a ground

3 This formulation is another view on the Gram-Schmidt process used in [11].
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truth comparison is impossible. Certainly, artificially constructed problems are
an exception. However, the generalizability of results is at least questionable for
such problems. Therefore, we chose to benchmark our approach indirectly via a
number of classification tasks. The rational is that results that are comparable
to those of well-established classifiers should underpin the importance of the
identified interest spots.

Next we show how to use these interest spots for classification using a sim-
ple decision rule and detail the data sets that were used. We then investigate
parameters of our approach and discuss the results of the classification tasks
in comparison to decision trees, Fisher’s linear discriminant analysis, k-nearest
neighbors with optimized k£ and support vector machines with linear and cubic
kernels. All experiments were performed via leave-one-out cross-validation.

5.1 Decision Rule

To perform classification we establish a simple decision rule based on interest
spots that were detected using the one group vs. rest use case. Therefore, we
define a group likelihood criterion as follows. For each group g, having the set
of interest spots 79, we define

p?(x) = max 197" (x4:t,Ss) - exp (; (x —x4)" (£:85) " (x — xs)>. (34)

This is a quite natural trade-off, where the first factor favors spots s with high
density difference, while the latter factor favors spots with small Mahalanobis
distance to the location x that is investigated. We may also think of p,(x) as an
exponential approximation of the scale-space density difference using interesting
spots only. Given this, our decision rule simply takes the group that maximizes
the group likelihood for the location of interest x. Figure 3 illustrate the decision
boundary obtained from this rule.

5.2 Data Sets

We carried out our experiments on three classification data sets taken from UCI
Machine Learning Repository. A brief summary of them is given in Table 1. In
the first task, we distinguish between benign and malign breast cancer based on
manually graded cytological charateristics, cf. [22]. In the second task, we dis-
tinguish between genuine and forged money based on wavelet-transform-derived
features from photographs of banknote-like specimen, cf. [9]. In the third task,
we differentiate among normal, spondylolisthetic and disc-herniated vertebral
columns based on biomechanical attributes derived from shape and orientation
of the pelvis and the lumbar vertebral column, cf. [4].

5.3 Parameter Investigation

Before detailing classification results, we investigate two aspects of our approach.
Firstly, we inspect the importance of bandwidth selection, benchmarking no
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(a) “Isometric” View

Fig. 3. Feature space decision boundaries (black plane curves) obtained from group
likelihood criterion for the two-dimensional two-group problem of Figure 1 using cget
for spot detection; Red squares and blue circles visualize the samples of each group;
Red/blue paths outline the dendrogram of scale-space density difference optima for the
red/blue group dominating the other group; Interesting spots of each dendrogram are
printed thick; Red/blue ellipses characterize the shape for each of the interest spots

Table 1. Data sets from UCI Machine Learning Repository

Breast Cancer |Banknote Authentication Vertebral Column
Groups |benign/malign genuine/forged normal/spondylo./herniated
Samples 444/239 762/610 100/150,/60
Dimensions 10 4 6

kernel density bandwidth against the least-squares cross-validation technique
that we use. Secondly, we determine the influence of the scale sampling rate. For
the latter we space n + 1 scales for various n equidistantly from zero to

tn = F 2 (1 - €|d) max ( ¢/ det (Eg)> , (35)

where Fx_zl( -|d) is the cumulative inverse-x? distribution with d degrees of free-
dom and ¥, is the covariance matrix of group g. Intuitively, ¢, captures the
extent of the group with largest variance up to a small ¢, i.e. here 1.5 - 1078,
To investigate the two aspects, we compare classification accuracies with and
without bandwidth selection as well as sampling rates ranging from n = 100 to
n = 300 in steps of 25. From the results, which are given in Table 2, we observe
that bandwidth selection is almost neglectable for the Breast Cancer (BC) and
the Banknote Authentication (BA) data set no matter which criterion is used for
spot detection. However, the impact is substantial throughout all scale sampling
rates for the Vertebral Column (VC) data set for both criteria. This may be due
to the comparably small number of samples per group for this data set.
Regarding the second aspect, we observe that for both criteria the BA and
VC data set classification accuracy increases only slightly when the scale sam-
pling rate rises. On the BC data set, accuracy remains stable, except for the
lower rates when cget is used for spot detection. There is no such drop for the
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Table 2. Classification accuracy of our decision rule in |%] for data sets of Table 1
for both detectors with/without bandwidth selection

Scale sampling rate n

i,let—based decision rule | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 270 | 300
Breast Cancer 65/65(97/97(97/97(95/95(97/97(95/95(97 /97|96 /96|97 /97

Banknote Authentication|96/94/96,/96|96/96|98/98(98/98|98/98|98/98(98,/98|99/99
Vertebral Column 87/82|88/83|88/84|88/83|88/85(88/85|88/86|88/86(88/87

Scale sampling rate n
cfyr—based decision rule | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 270 | 300
Breast Cancer 96/96(97/97|96/96(96 /96|96 /96|96 /96|96 /96|96 /96|96 /96
Banknote Authentication|95/95(97/97|98,/98(97/97(98/98|98/98|98/98(98,/99/99/99
Vertebral Column 89/81|89/80(89/80(89,/83|89/83|89/84(89/83|89/84|89/83

C

cfyr—derived results, indicating a higher sensitivity of the latter for sparser sam-
plings. Apart from that, the differences between the results of both criteria are
minor for all data sets and sampling rates. From the results we conclude that
bandwidth selection is a necessary part for interest spot detection. We further
recommend n > 200, because accuracy is saturated at this point for all data sets
independently of the choice of the spot detection criterion. For the remaining
experiments we used bandwidth selection and a sampling rate of n = 200.

5.4 Classification Results

A comparison of classification accuracies of our decision rule against the afore-
mentioned classifiers is given in Table 3. For the BC data set we observe that
except for the support vector machine (SVM) with cubic kernel all approaches
were highly accurate, scoring between 94% and 97% with our ci‘}et—based decision
rule being topmost and the cgr—derived results being only slightly worse. Even
more similar to each other are results for the BA data set, where all approaches
score between 97% and 99%, with ours lying in the middle of this range. Results
are most diverse for the VC data sets. Here, the SVM with cubic kernel again
performs significantly worse than the rest, which all score between 80% and 85%,
while our cget /c-based decision rules peak at 88% and 89% respectively. Other
research showed similar scores on the given data sets. For example the artifi-
cial neural networks based on pareto-differential evolution in [1] obtained 98%
accuracy for the BC data set, while [18] achieved 83% to 85% accuracy on the
VC data set with SVMs with different kernels. These results suggest that our
interest points carry information about a data set that are similarly important
than the information carried by the well-established classifiers.

Confusion tables for our approach are given in Table 4 for all data sets. As can
be seen, our cfi“ / cﬁf—based decision rules gave balanced inter-group results for the
BC and the BA data set. We obtained only small inaccuracies for the recall of the
benign (96%/96%) and genuine (97%/96%) groups as well as for the precision
of the malign (94%/93%) and forged (96%/95%) groups. Results for the VC
data set were more diverse. Here, a number of samples with disc herniation were
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Table 3. Classification accuracies of different classifiers in |%| for data sets of Table 1

Breast Cancer|Banknote Authen.|Verteral Column
decision tree 94 98 82
k-nearest neighbors 97 99 80
Fisher’s discriminant 96 97 80
linear/cubic kernel SVM 96/90 99/98 85/74
2 /e -based decision rule 97/96 98/98 88/89

mistaken for being normal, lowering the recall of the herniated group (86%/86%)
noticeably. However, more severe inter-group imbalances were caused by the
normal samples, which were relatively often mistaken for being spondylolisthetic
or herniated discs. Thus, recall for the normal group (76%/80%) and precision
for the herniated group (74%/76%) decreased significantly. The latter is to some
degree caused by a handful of strong outliers from the normal group that fall into
either of the other groups, which can already be seen from the group likelihood
plots in Figure 4. This finding was made by others as well, cf. [17].

Table 4. Confusion table for predicted/actual groups of our ¢§°/c!f-based decision
rule for data sets of Table 1

(a) Breast Cancer (b) Banknote Authentication
act. benign malign |precision act. enuine forged |precision
pred. & gn P pred. genu & P
benign [429/429 4/6 99/98 genuine |742/736 0/0 |100/100
malign | 15/15 235/233| 94/93 forged | 20/26 610/610| 96/95
recall 96/96  98/97 %] recall 97/96 100/100| |%]|
(c) Vertebral Column
act. normal spondylo. herniated|precision
pred. pondy’o. p
normal | 76/80 1/1 6/7 91/90

spondylo.| 10/8 145/145 2/1 92/94
herniated | 14/12  4/4  52/52 | 74/76
recall |76/80 96/96  86/86 %]

The other classifiers performed similarly balanced on the BA and BC data set.
Major differences occured on the VC data set only. A precision/recall comparison
of all classifiers on the VC data set is given in Table 5. We observe that the
precision of the normal and the herniated group are significantly lower (gap >
12%) than that of the spondylolisthetic group for all classifiers except for our
decision rules, for which at least the normal group is predicted with a similar
precision by both rules. Regarding the recall we note an even more unbalanced
behavior. Here, a strict ordering from spondylolisthetic over normal to herniated
disks occurs. The differences of the recall of spondylolisthetic and normal are
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Fig. 4. Sample group likelihoods and decision boundary (black diagonal line) for the
Vertebral Column data set of Table 1 using c5°" (left) and ¢! (right) for spot detection;

Normal, spondylolisthetic and herniated discs in blue, magenta and red, respectively

significant (gap > 16 %) and those between normal and herniated are even larger
(gap > 18 %) among all classifiers that we compared against. The recalls for our
decision rules are distributed differently, ordering the herniated before the normal
group. Also the magnitude of differences is less significant (gaps ~ 10%/6%) for
both decision rules. Results of the comparison indicate that the information that
is carried by our interest points tends to be more balanced among groups than the
information carried by the well-established classifiers that we compared against.
The final question which interest spot detection criterion (¢§° or ¢!f) should be
recommended cannot be answered satisfactorily based solely on our evaluation,
because result differ only insignificantly. Yet, we advocate c?,et since it has been
shown to provide better scale selection properties under affine transformation of
the feature space, cf. [13].

Table 5. Classification precision and recall of different classifiers in |%] for the Ver-
tebral Column data set of Table 1

normal group [spondylo. group|herniated group
precision|recall |precision| recall |precision| recall

decision tree 69 83 97 95 68 50
k-nearest neighbors 70 74 96 96 58 55
Fisher’s discriminant 70 80 87 92 74 48

linear /cubic kernel SVM | 76/59 |85/82| 97/90 |96/91| 72/52 |61/18
3 /e -based decision rule| 91/90 |76/80| 92/94 |96/96| 74/76 |86/86

6 Conclusion

We proposed a detection framework that is able to identify differences among the
sample distributions of different observations. Potential applications are mani-
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fold, touching fields such as medicine, biology, chemistry and physics. Our ap-
proach bases on the density function difference of the observations in feature
space, seeking to identify spots where one observation dominates the other. Su-
perimposing a scale-space framework to the density difference, we are able to
detect interest spots of various locations, size and shapes in an efficient manner.

Our framework is intended for semi-automatic processing, providing human-
interpretable interest spots for further investigation of some kind. We outlined
how the output of our framework can be used to guide exploratory visualization
of high-dimensional feature spaces as an intermediate step prior to other means
of data analysis. Furthermore, we showed that the detected interest spots carry
valuable information about a data set on a number of classification tasks from the
UCI Machine Learning Repository. To this end, we established a simple decision
rule on top of our framework. Results indicate state-of-the-art performance of
our approach, which underpins the importance of the information that is carried
by the detected interest spots.

In the future, we plan to extend our work to support repetitive features such
as angles, which currently is a limitation of our approach. Modifying our notion
of distance, we would then be able to cope with problems defined on, e.g. a
sphere or torus. Future work may also include the migration of other types of
scale-space detectors to density difference problems. This includes the notion of
ridges, valleys and zero-crossings, leading to richer sources of information.
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