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a b s t r a c t 

In statistics, machine learning, and related fields, feature selection is the process of choosing a smaller 

subset of features to work with. This is an important topic since selecting a subset of features can help 

analysts to interpret models and data, and to decrease computational runtimes. While many techniques 

are purely automatic, the data visualization community has produced a number of interactive approaches 

where users can make decisions taking into account their domain knowledge. In this paper we propose a 

new visualization technique based on radial axes that allows analysts to perform feature selection effec- 

tively, in contrast to previous radial axes methods. This is achieved by employing alternative scaled axes 

that provide insight regarding the features that have a smaller contribution to the visualizations. There- 

fore, analysts can use the technique to carry out interactive backwards feature elimination, by discarding 

the least relevant features according to the information on the plots and their expertise. Our approach 

can be coupled with any linear dimensionality reduction method, and can be used when performing 

analyses of cluster structure, correlations, class separability, etc. Specifically, in this paper we focus on 

combining the proposed technique with methods designed for classification. Lastly, we illustrate the ef- 

fectiveness of our proposal through a case study analyzing high-dimensional medical chronic conditions 

data. In particular, clinicians have used the technique for determining the most important features that 

discriminate between patients with diabetes and high blood pressure. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The analysis of high-dimensional data sets is a complex and

common problem in fields such as statistics, data mining, or ma-

chine learning. In practice, data sets may contain hundreds or

thousands of features, many of which can be irrelevant, redundant,

or simply add noise. Feature selection consists of the process of

discarding those features. The topic is important since analyzing

or using the resulting smaller subset can provide several benefits

such as: simpler models that are easier to interpret, reduced over-

fitting, enhanced performance, or shorter computational runtimes. 

While many feature selection techniques rely on purely auto-

matic procedures ( Guyon & Elisseeff, 2003 ), the data visualiza-
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ion community has produced a number of interactive approaches

here users are integrated into the analysis process with the goal

f benefiting from their perceptual capabilities, flexibility, and do-

ain knowledge. With these visualization tools analysts are able to

teer the selection process according to their expertise, obtaining

ubsets of features adapted to the specific problem and application

omain, in contrast to automatic methods. 

In this paper we focus on interactive visualization meth-

ds based on radial axes ( Kandogan, 20 0 0; 20 01; Rubio-Sánchez,

anchez, & Lehmann, 2017 ), which map high-dimensional samples

nto a two-dimensional space. The transformations are defined

hrough a set of radial axis vectors, each associated with a feature,

hich users can modify interactively in order to carry out diverse

xploratory tasks, such as analyzing correlations, cluster structure,

r class separation, or searching for outliers or data with desired

haracteristics. However, performing feature selection with these

ethods is cumbersome. On the one hand, a forward selection is

mpractical, especially for efficiency reasons. On the other hand,

hile a backwards selection could be implemented with current
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echniques, the size of the axis vectors and the scale of the plots

omplicate determining which features should be discarded, from

oth a visual and an interactive point of view. 

Alternatively, in this paper we introduce a new approach based

n radial axes that is designed to facilitate performing backwards

eature elimination, where users can progressively discard features

ith a small influence either on the visualizations or on a spe-

ific task (e.g., class or cluster separation). Specifically, this is ac-

omplished by employing a set of scaled radial vectors that pro-

ide a clearer visual guidance for determining which features have

he least impact on the low-dimensional plots, and therefore rep-

esent reasonable candidates to be discarded in a backwards elim-

nation process. In practice, analysts determine the contribution of

he features to the plots and their related analysis tasks by exam-

ning the lengths and orientations of the axis vectors. Moreover,

hey can also take into consideration their expertise when decid-

ng whether a feature should belong to the final selected subset.

astly, we illustrate the effectiveness of our approach through a

ase study related to a real medical chronic conditions data set.

oncretely, clinicians have used the technique, in combination with

heir expert domain knowledge, in order to obtain insight regard-

ng the discriminative power of the data features for classifying di-

betes and/or high blood pressure patients. 

The rest of the paper is organized as follows. Section 2 de-

cribes the most relevant methods related to our proposal. In

ection 3 we describe our approach based on scaled axes, il-

ustrating how the proposal can be used to perform visual fea-

ure selection. Section 4 shows its capabilities through the case

tudy related to medical data. Finally, Section 5 presents a discus-

ion with the main benefits and limitations of the proposal, while

ection 6 presents the conclusions and future work. 

. Related work 

In this section we present a brief introduction to feature selec-

ion methods (with emphasis on visual techniques), and describe

he most relevant radial axes methods for multivariate visualiza-

ion related to our proposal. 

.1. Feature selection 

There is a vast literature on automatic feature selection tech-

iques ( Blum & Langley, 1997; Chandrashekar & Sahin, 2014;

uyon & Elisseeff, 2003 ). Feature ranking methods sort the fea-

ures according to some criteria and then select the features pro-

ressively ( forward selection ), consider all of the features initially

nd discard them sequentially ( backwards elimination ), or simply

pply some threshold to select the top-ranked features. If the ul-

imate goal is classification, these strategies are also called filters ,

nd discard features as an independent preprocessing step before

raining a classifier. Alternatively, wrapper methods select subsets

f features according to the accuracy of classification algorithms,

hich can be regarded as black boxes that score subsets of fea-

ures. Lastly, embedded methods use a hybrid strategy that incorpo-

ates the feature selection process when training a particular clas-

ifier. 

The method proposed in this paper can be regarded as a fea-

ure ranking procedure for backwards elimination feature selec-

ion. However, instead of defining an automatic algorithm, it relies

n interactive visualizations of data where users can apply their

omain knowledge to steer the process of discarding features. Re-

ently, the data visualization community has developed several vi-

ual feature selection methods and tools that also take into ac-

ount user interaction. Most of the approaches propose graphi-

al user interfaces that show several visualizations simultaneously.

ome contain well-known graphics in order to show overviews
r properties of the data, while others constitute novel visualiza-

ion methods. In order to perform feature selection many of these

ethods rely on quality metrics , which are measures that extract

eaningful information about data. While some of these metrics

re popular statistical estimates (correlation, Fisher score, or en-

ropy gain, among others), many others constitute heuristic mea-

ures ( May, Bannach, Davey, Ruppert, & Kohlhammer, 2011 ). 

Several of the earliest proposals are due to Yang et al.,

hich developed hierarchical methods for visual feature reduc-

ion. Yang, Peng, Ward, and Rundensteiner (2003a) propose a di-

ensionality reduction method based on InterRing visualizations

 Yang, Ward, & Rundensteiner, 2002 ), which groups features hi-

rarchically according to their similarity. The method was later

xtended to rank and filter out features ( Yang, Ward, Runden-

teiner, & Huang, 20 03b ). Guo (20 03) describes an interactive tool

sing several visualizations (e.g., parallel coordinates ( Inselberg &

imsdale, 1990 ) and entropy matrices) to identify subspaces and

igh-dimensional (hierarchical) clusters. The approach uses vari-

us heuristics, including a measure of the “goodness of a clus-

ering”, and orderings related to paths on minimal spanning trees

MST). An interactive framework for ranking features based on or-

ering histograms and scatter plots is proposed in Seo and Shnei-

erman (2005) . The work relies on numerous heuristics related to

he distributions that appear in the visualizations (e.g., uniformity,

umber of outliers or gaps, or modality). Similarly, Johansson and

ohansson (2009) use heuristics related to the importance of a fea-

ure for correlation, outlier, and cluster detection. By weighting

hese measures interactively, users can generate feature orderings

nd reduce the number of features. Ingram et al. (2010) present

he DimStiller system for feature reduction and analysis. It uses

bstractions (e.g., operators, expressions, or workflows) to combine

ifferent visualization techniques, and structure and guide the data

nalysis process. In particular, the approach can be used to deter-

ine whether features are meaningful, relationships between fea-

ures, or the validity of detected clusters. May et al. (2011) propose

n interactive visualization technique denoted as SmartStripes for

uiding the feature selection process, which can be used with cat-

gorical features. Tatu et al. (2012) examine clusterings in different

ets of subspaces, which can be interactively explored by relying

n subspace similarity and interestingness measures. The visual-

zation tool allows to visualize features and subsets of features at

arious levels of detail, through parallel coordinates, lists of scat-

er plots, or multidimensional scaling (MDS) ( Cox & Cox, 1994 )

isualizations. Krause, Perer, and Bertini (2014) describe the IN-

USE system, which is designed to help interpret how predic-

ive features are ranked across feature selection algorithms and

lassifiers. For each feature, the tool displays a circular glyph

epicting information related to several feature selection meth-

ds, which are based on measures of information gain, Fisher

core, odds ratios, and relative risks. In addition, the tool de-

icts the results of several classification algorithms for the fea-

ure selection methods, across several cross-validation folds. Lastly,

auber et al. (2015) propose a tool for interactive image feature se-

ection including five different views (observation, projection, fea-

ure, group, and feature scoring) that show information at var-

ous levels of detail. The tool uses recursive feature elimination

RFE) ( Guyon, Weston, Barnhill, & Vapnik, 2002 ) and an ensemble

f randomized decision trees ( Geurts, Ernst, & Wehenkel, 2006 ),

nd the projection view employs the least square projection (LSP)

 Paulovich, Nonato, Minghim, & Levkowitz, 2008 ) dimensionality

eduction technique. 

Table 1 presents a brief summary of the previous visual feature

election methods. In particular, the table considers: (a) the goal

r task they are designed for, (b) the reduction approach, which

an consist of progressively discarding features one by one, or of

electing entire subsets of features in a single step, (c) the auxil-
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Table 1 

Summary of visual feature selection methods in the literature. 

Method Task Reduction approach Auxiliary visualizations Quality metric 

Yang et al. (2003a) Dimensionality Subset selection InterRing Similarity 

reduction 

Yang et al. (2003b) Feature ranking Subset selection InterRing Similarity 

Importance 

Guo (2003) Feature insight Feature reduction Entropy matrix Goodness of clustering 

Clustering Subset selection Parallel coordinates Maximum conditional entropy 

Interactive histograms MST ordering 

Bar and line charts 

Seo and Shneiderman (2005) Feature ranking Feature reduction Score matrix 1 and 2-dimensional metrics 

Histograms Modality 

Scatterplots Outlierness 

Box plots Gaps 

Johansson and Johansson (2009) Feature ranking Feature reduction Score matrix Correlation 

Scatter plot matrix Distribution density 

Parallel coordinates 

Ingram et al. (2010) Feature insight Feature reduction Scatter plot matrices Intrinsic dimensionality 

Cluster validation Correlation matrices Variance and correlation 

Scree plots MDS stress 

May et al. (2011) Feature insight Subset selection Histograms Mutual information 

Tatu et al. (2012) Clustering Subset selection Parallel coordinates Subspace redundancy 

Scatterplot lists Subspace interestingness 

MDS of subspaces 

Krause et al. (2014) Feature insight Feature reduction Glyphs Information gain 

Classification Subset selection Bar charts Fisher score 

Odds ratio 

Relative risk 

Rauber et al. (2015) Classification Feature reduction Scatterplots RFE 

LSP Random forests 
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iary visualization methods, and (d), the quality metrics used. It is

worth mentioning that the capability of a tool for feature selection

not only depends on the different graphics and the associated in-

teraction techniques, but also on the nature of the data set, and on

the quality metrics used to rank the features (or feature subsets),

which are remarkably diverse. Bertini, Tatu, and Keim (2011) carry

out a thorough literature review in order to provide a unified pic-

ture of proposed quality metrics for high-dimensional data visual-

ization). 

2.2. Radial axes methods 

In this paper we propose a new approach based on radial axes

visualizations that allows analysts to perform feature selection ef-

fectively. Radial axes methods are popular multivariate visualiza-

tion techniques that produce dimensionality reduction mappings.

The simplest method is star coordinates (SC) ( Kandogan, 20 0 0;

2001 ), which is an extension of the scatterplot for more than two

features, and has been used for exploratory tasks such as analyzing

cluster structure, outliers, or trends. Let X be an N × n data ma-

trix, containing N samples, each characterized by n features. The

method maps high-dimensional samples x ∈ R 

n onto a plane by

relying on a set of n axis vectors v i ∈ R 

2 , for i = 1 , . . . , n, with a

common origin point. Each v i is associated with the i -th feature.

In particular, the low-dimensional representation p ∈ R 

2 (also de-

noted as an “embedded point”) of a sample x = [ x 1 , x 2 , · · · , x n ] 
T is

a linear combination of the vectors v i . Formally, 

p = x 1 v 1 + x 2 v 2 + · · · + x n v n = V 

T x , (1)

where V is the n × 2 matrix whose rows are the vectors v i . The

method therefore generates linear mappings specified by V . In SC,

the orientation of an axis vector determines the direction in which

a feature increases, while the length is related to its contribution to

the plot. For illustration purposes, Fig. 1 (a) shows an example us-

ing four features (‘Acceleration’, ‘Horsepower’, ‘Displacement’, and

‘MPG’) of the Auto MPG data set, available at the UCI Machine

Learning Repository ( Lichman, 2013 ). The axis vectors have been
hosen to search for cars with large values of ‘Horsepower’ and

Acceleration’, but low values of ‘MPG’, which would be repre-

ented as dots at the top of the plot. The visualization also includes

n axis vector for ‘Displacement’, which plays a role horizontally. It

s important to note that although the length of its axis vector is

maller than the remaining lengths, its contribution to the plot is

mportant since it has a larger component in the horizontal direc-

ion. 

In practice, users can modify the axis vectors interactively in or-

er to carry out diverse analysis tasks. However, another possibility

s to automatically obtain sets of axis vectors from linear meth-

ds such as principal component analysis (PCA) ( Jolliffe, 2010 ),

ndependent component analysis (ICA) ( Hyvärinen, Karhunen, &

ja, 2001 ), linear discriminant analysis (LDA) ( McLachlan, 2004 ),

nd so forth. Consider a linear method that maps data points

nto a plane through p = Ax , where A is a known 2 × n matrix.

learly, we can build a SC model that generates the same plot by

etting V = A 

T , due to (1) . In other words, we can recover the

C axis vectors (they would be the columns of A ) that lead to

he plot related to the linear method. In the SC model, the pos-

ibility to visualize these axis vectors, together with the plotted

oints, allows us to determine relationships between the features

nd their contribution to the plots. Rubio-Sánchez, Raya, Díaz, and

anchez (2016) introduced this idea to analyze plots based on LDA.

ecently, Wang et al. (2017) have denoted it as discriminative star

oordinates, and it has also been applied to the results of unsu-

ervised LDA ( Ding & Li, 2007 ), which combines k -means cluster-

ng ( MacQueen, 1967 ) and LDA. Lastly, these works carry out fea-

ure selection by only comparing the lengths of the axis vectors.

n other words, they do not take advantage of their orientations,

hich should also be considered (see Section 3.5 ). 

Rubio-Sánchez et al. (2017) present a hybrid approach that

ridges the gap between SC and principal component bi-

lots ( Gabriel, 1971; Gower, Gardner-Lubbe, & le Roux, 2011 ) called

daptable radial axes (ARA) plots. In SC, users can update the axis

ectors freely, but it is difficult to recover high-dimensional data

alues accurately, which is one of the main disadvantages of the
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Fig. 1. Radial axes plots of the Auto MPG data set: (a) SC plot; (b) ARA plot, where the axis vectors have been selected to generate the PCA projection of the data onto a 

plane. 
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ethod ( Draper, Livnat, & Riesenfeld, 2009 ). Alternatively, with

rincipal component biplots users can approximate the feature

i.e., data) values of an entire data set as accurately as possible (in

 least squares sense) through projections of the embedded points

nto ticked axes (see Fig. 1 (b)). However, since the axis vectors are

xed in these visualizations, users cannot modify them in order

o carry out several exploratory analysis tasks (e.g., searching for

ata with certain features, or creating different mappings in order

o detect outliers or visualize clusters). In ARA plots analysts can

pdate the axis vectors freely, and also approximate data values

hrough projections onto ticked axes. Fig 1 (b) shows an example

hat uses standardized data. In this case, the means (which are 0)

re represented at the origin, and the difference between consecu-

ive tick marks corresponds to one standard deviation of the corre-

ponding feature. Taking this interpretation into consideration, we

an approximately determine through orthogonal projections that

he car associated with the darker blue point (which is also de-

icted in the SC plot) has a large value of ‘Acceleration’ (approxi-

ately 2.8), and low values of ‘MPG’, ‘Horsepower’ and ‘Displace-

ent’. Although the estimated values are simply approximations,

t is considerably simpler to obtain them visually using ticked axes

han in the SC graphic (see Rubio-Sánchez & Sanchez (2014) ). Ad-

itionally, it is also worth mentioning that, similarly to SC, it is

ossible to configure the axis vectors to generate any linear map-

ing. In this example, the particular choice of axis vectors leads to

 PCA plot of the data. 

Formally, given a set of axis vectors coded in V , ARA plots find

he low-dimensional embedded point p of a data point x by solv-

ng the following optimization problem: 

inimize 

p ∈ R 

2 

‖ Vp − x ‖ , 
(2) 

here Vp is the vector of approximated values for the data point

 . Therefore, in ARA plots the approximated feature values are the

ot products between the embedded points p and the axis vec-

ors v i . In this scenario, the value represented at the endpoint of

he axis vector is ‖ v ‖ 2 . In addition, a unit of the original feature

s located at 1/ ‖ v ‖ along the axis, which implies that the distance

etween tick marks separating consecutive integers is also 1/ ‖ v ‖ .
ince the length of v does not correspond to a unit of a feature

unless ‖ v ‖ = 1 ), it cannot be used as a visual reference to indicate

he location along the axis where a unit would be represented (see

ig. 2 (a) for details). Therefore, the method requires drawing axis

ines together with tick marks representing integers of the features.

ithout these tick marks, users would not be able to approximate

ata features properly, since it is difficult to visually estimate the

eciprocal of the length of an axis vector (i.e., 1/ ‖ v ‖ ). Lastly, draw-

ng these ticked axes can produce crowded plots even for a small
umber of features (see Section 3.4 ). The method proposed in this

ork mitigates this drawback. 

. Scaled radial axes plots 

For the purpose of analyzing high-dimensional data and carry-

ng out visual feature selection, we propose here a new radial axes

ethod called Scaled Radial Axes (SRA) plots. In this section we

escribe the approach and indicate the main differences with other

echniques based on radial axes. 

.1. Description and mathematical formulation 

Users in SRA plots will also be able to recover feature values ( x i )

y relying on orthogonal projections onto axes, similarly to ARA

lots. In ARA the approximated values correspond to dot products

etween embedded points and axis vectors, which require axes

ines and tick marks to indicate the locations associated with in-

eger approximations. Alternatively, in SRA we consider a more in-

uitive strategy that uses scaled axes, where a unit of a feature is

ocated exactly at the endpoint of its axis vector. Therefore, in this

cenario the length of an axis vector determines the distance be-

ween consecutive integers of its corresponding feature. This is il-

ustrated in Fig. 2 , which shows the relationships between the dis-

ances on the plots and the corresponding approximations on the

xes, for ARA and SRA. 

In SRA the idea is implemented by recovering the i -th data fea-

ure of a data point through the following scaled dot product: 

v T 

i 
p 

‖ v i ‖ 

2 
. 

y dividing by the squared Euclidean norm of an axis vector, its

ndpoint now represents a unit of its associated feature, as shown

n Fig. 2 (b). This allows us to omit drawing line axes when the

pproximations are small (see Section 3.4 ). Therefore, we define

RA formally through the following optimization problem: 

inimize 

p ∈ R 

2 
‖ ̄V p − x ‖ 

2 
2 , (3) 

here V̄ is similar to V , but in this case each row is divided by its

quared norm. Specifically, the rows of V̄ are: 

¯
 i = 

{
v i 

‖ v i ‖ 2 2 

if v i � = 0 , 

0 if v i = 0 . 
(4) 

he optimal solution to (3) is given by: 

 = V̄ 

† x , (5) 
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Fig. 2. Relationships between approximated values (indicated on the upper part of the horizontal line) and distances in the plots (shown on the lower part of the horizontal 

line) for: (a) ARA, and (b) SRA. Note that ARA requires axes lines and tick marks (in red) to indicate the values of the approximations. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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where † denotes the Moore–Penrose pseudoinverse. The method

therefore builds a linear mapping from the data space onto the ob-

servable plane characterized by the matrix V̄ 

† . We can define the

projection of an entire data set in matrix notation through: 

P = X ( ̄V 

† ) T , (6)

where P is the N × 2 matrix whose rows consist of the embed-

ded points. In practice it can be computed very efficiently, even

for large values of n and N (see Section 5 ). Finally, when V̄ has full

column rank (i.e., when the axis vectors are not all aligned along

the same direction), V̄ 

† = ( ̄V 

T V̄ ) −1 V̄ 

T . 

3.2. Influence of the axis vectors on the plots 

Using V̄ not only determines how the axes are scaled, but it

also affects how the axis vectors influence the plots, and how users

must interact with them. It is important to notice that shorter vec-

tors will have a stronger impact on the SRA plots, in contrast to

longer vectors when using other radial axes plots. Observe that,

when searching for the optimal embedded point p , the optimiza-

tion problem in (3) naturally focuses on minimizing errors on

shorter axis vectors. In particular, note that the objective function

in (3) can be rewritten as: 

n ∑ 

i =1 

(
1 

‖ v i ‖ 

2 
· v T 

i p − x i 

)2 

. (7)

Therefore, if the i -th axis vector v i is long, 1/ ‖ v i ‖ 2 will be small

and the choice of p will barely affect the i -th term of the sum in

(7) . The scaled axis vectors are useful for visual backwards feature

selection since it is easier to spot the longest vectors, associated

with features with a small influence on the plots. 

However, the length of an axis vector is not the only factor de-

termining the contribution of a feature to a plot. To illustrate this,

in this work we compute the average displacement of the low-
imensional points when a feature is discarded as: 

f (v i ) = 

1 

N 

N ∑ 

j=1 

‖ p 

( j) − q 

( j) 
v i 

‖ , (8)

here N is the cardinality of the data set, p 

( j ) is the embedded

oint of the j -th data sample for a particular radial axes method,

nd q 

( j) 
v i 

is the corresponding low-dimensional point when remov-

ng the feature associated with the axis vector v i . 

Fig. 3 shows an example of these average displacements for SC,

RA, and SRA plots. Specifically, we generated a random set of

 = 50 axis vectors, and a random data set of N = 100 points. The

omponents of the axis vectors and the values of the data points

ere drawn from a standard normal distribution. Subsequently, we

omputed the low-dimensional points associated with the three

ethods, and obtained their average displacements. The dots on

he graphics represent pairs ( ‖ v i ‖ , f ( v i )) and illustrate the average

isplacement of the mapped points when v i is removed from a ra-

ial axes plot, as defined in (8) . The trend for SC and ARA is clearly

ncreasing, but dots do not follow a strictly increasing pattern as

 v i ‖ grows. Thus, there are features with longer axis vectors that

o not contribute as much as others with shorter ones. Similarly,

 ( v i ) does not strictly decrease as ‖ v i ‖ increases for SRA. For in-

tance, the feature with the second shortest axis vector has less

mpact on the plot than the features with the third to sixth short-

st axis vectors. Therefore, besides the length of an axis vector, it

s necessary to take into account other factors such as the orien-

ation of the axis vectors, the arrangement of clusters or classes in

he plots, or domain knowledge (see Section 3.5 ). We emphasize

his consideration since previous works in the literature have only

ocused on analyzing the lengths of the axis vectors. 

.3. Arbitrary linear mappings 

Similarly to SC and ARA, it is also possible to select a set of axis

ectors in SRA to generate any linear mapping from the data space



A. Sanchez et al. / Expert Systems With Applications 100 (2018) 182–196 187 

Fig. 3. Example of the contribution of axis vectors to plots (in terms of the average displacement of mapped points when removing a feature) depending on their length, 

for SC, ARA and SRA. 
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nto the plane. Let A be a known 2 × n matrix defining the linear

ransformation to reproduce. Due to (5) , we would need to find a

et of axis vectors for which V̄ 

† = A . This can be accomplished by

rst computing the pseudoinverse of A , which provides V̄ : 

¯
 = A 

† , (9) 

ince M = (M 

† ) † for any matrix M . Subsequently, the axis vectors

that form V ) can be recovered through: 

 i = 

{
v̄ i 

‖ ̄v i ‖ 2 2 

if v̄ i � = 0 , 

0 if v̄ i = 0 , 
(10) 

hich follows from (4) , since it defines an involution. The axis vec-

ors are therefore the rows of the pseudoinverse of A , divided by

heir squared length. The special case in (10) is included by con-

idering that A can be any matrix, where some rows of V̄ could be

qual to 0 . In those cases, the corresponding axes cannot be spec-

fied for the features. Thus, their axis vectors are set to 0 , and the

eatures are ignored when determining the optimal p . 
Fig. 4 shows radial axes plots that produce the LDA mapping of

he well-known Iris data set ( Lichman, 2013 ). It contains four data

eatures (‘petal length’, ‘petal width’, ‘sepal length’, ‘sepal width’)

nd three classes (‘setosa’, ‘versicolour’, ‘virginica’) that identify

hree species of the iris flower. In particular, we generated the LDA

ransformation automatically (using standardized data) to separate

he three classes, and recovered the layout of axis vectors that

ould generate that mapping for SC, ARA, and SRA, in (a), (b), and

c), respectively. Note that the plotted points are the same in the

hree visualizations. The SC plot does not incorporate line axes, and

herefore users cannot recover feature values accurately. The ARA

lot mitigates this issue by including ticked axes (but can lead to

luttered visualizations for data sets that contain more features).

n SRA, the ticked line axes are not necessary and the visualiza-

ion also allows users to recover feature values by using the vec-

ors instead of line axes (the endpoints of the vectors indicate the

ocation of the units on the axes). Moreover, it is easier to visually

dentify the less relevant features for the class separation task in
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Fig. 4. Radial axes plots that produce the LDA mapping of the Iris data set for: (a) SC, (b) ARA, and (c) SRA. The embedded points are colored according to their class. The 

axis vectors in the ARA plot are very short and are depicted in black near the origin. 

Fig. 5. Projection of the Wine data set, composed of 13 features, considering: (a) ARA plot, with axis vectors barely visible due to their small size (depicted in black near the 

origin), and axes with tick marks; (b) SRA plot using V̄ , where the axis vectors provide enough visual information to recover original feature values. The clutter reduction 

when using SRA is apparent (due to the absence of axis lines). 
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SRA (longest vectors) than in ARA (shortest vectors), which is use-

ful for backwards feature selection. Moreover, in this example the

axis vectors in the ARA plot are barely visible. 

3.4. Clutter reduction 

The scaling of the axes is a key contribution regarding the us-

ability of SRA: since the vector length visually encodes a unit of

the particular feature, it provides the same information as the first

tick mark on an ARA plot. This allows us to omit drawing line axes

and their corresponding tick marks when values of the data fea-

tures are small, which reduces clutter considerably. 

Fig. 5 illustrates an example with the Wine data set available

in Lichman (2013) . This data set contains 13 features correspond-

ing to the chemical analysis of three types of wine, which we have

standardized in a preprocessing stage. The visualization in Fig. 5 (a)

is an ARA plot, where we have selected the axis vectors to ob-

tain the PCA projection of the data onto a plane. The application

of SRA in Fig. 5 (b) points out some weaknesses of ARA: (1) greater

overlap in the ARA plot due to the necessity of drawing the axis

lines; (2) though the directions of axis vectors are provided by the

axis lines, their specific orientations are barely visible; and (3) axes
an share the same or very similar directions in some configura-

ions (e.g., in regular layouts that are often used in the literature),

aking it difficult to distinguish which tick marks are associated

ith which features. This last issue is illustrated in Section 5 (a),

here the colored darker axes exhibit almost identical directions.

ote that without colors it would not be trivial to identify which

ick marks correspond to a particular axis. Alternatively, the analo-

ous SRA plot in Fig. 5 (b) is less cluttered since it does not contain

ine axes. We have also colored the two vectors that share almost

dentical directions for reference, though this coloring is not nec-

ssary in SRA for distinguishing the axes and approximating values

f the corresponding features. Lastly, when axes are omitted it can

e easier to incorporate names of features into the plots. 

In practice, the absence of tick marks in the SRA plot in Fig. 5 (b)

oes not hamper users’ ability to visually compute projected values

everely, in comparison with the radial ticked axes plot in Fig. 5 (a),

hich requires them. Note that in radial axes methods the fea-

ures should share a similar scaling, since otherwise features with

arger ranges would have a greater impact on the resulting plots.

herefore, they are usually standardized, transformed to lie in the

0,1] interval, or centered and normalized to have unit range. In
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Fig. 6. Average distance from embedded points to the origin, for random configurations of vectors and data whose components were drawn from a standard normal 

distribution. 
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ll of these cases the absolute values of the approximations cor-

esponding to orthogonal projections onto the axes are generally

ower than two. Therefore, users can approximate these values ac-

urately by relying exclusively on the depicted axis vectors, whose

ndpoints are equivalent to one tick mark in a ticked axis. 

Furthermore, the projections onto the axes in SRA are small not

nly because the data are standardized, but also due to the clump-

ng effect of the projections, which tends to map points closer to

he origin as the number of features increases. This effect is shown

n Fig. 6 , which shows average distances from embedded points to

he origin as a function of the number of features ( n ). The results

ere averaged over 200 trials of random configurations of vectors,

here we mapped 50 samples in each trial. The components of the

xis vectors, and the values of the data points, were drawn from a

tandard normal distribution. 

Finally, standardization has two main benefits. Firstly, a unit of

 feature represents one standard deviation. Thus, the length of

n axis vector in SRA, or the location of the first tick mark in

RA, have a clear statistical meaning. This is important to sim-

lify the graphics, since it allows us to omit numerical labels

ext to the tick marks (see Fig. 1 (b)). Secondly, Rubio-Sánchez and

anchez (2014) showed that the approximations are more accurate

hen the data are centered. 

.5. Interactive visual feature selection for class separation 

Since the scaling introduced in SRA highlights the least im-

ortant features, the technique is appropriate for visual sequential

ackwards feature selection. In practice, users can eliminate fea-

ures progressively by considering their contribution to a specific

lot, which is affected by the lengths and directions of the axis

ectors. They can also decide to maintain or discard features ac-

ording to their domain knowledge. 

In addition, assuming the data are categorized into several

lasses, it is possible to recover the axis vectors in SRA to

enerate plots related to linear methods designed to enhance

lassification performance. The most popular linear method is

DA, which maximizes the ratio between the inter-class and

ntra-class variance. In this paper we will also rely on met-

ic learning approaches such as large margin nearest neighbor

LMNN) ( Weinberger & Saul, 2009 ), and neighbourhood compo-

ents analysis (NCA) ( Goldberger, Roweis, Hinton, & Salakhutdinov,

005 ), whose goal consists of enhancing nearest neighbor classifi-

ation. The resulting SRA plots will provide insight regarding the

ess discriminative features in the data. 

For instance, Fig. 7 shows an SRA plot associated with a

MNN mapping of the Breast Cancer Wisconsin Diagnostic data

et ( Alcala-Fdez et al., 2008 ), which includes 30 features from a

igitized image of a fine needle aspirate of breast mass, used to

etermine if a tumor is benign (darker blue dots) or malignant
lighter orange dots). The data set contains information regard-

ng 10 characteristics (radius, texture, perimeter, area, smoothness,

ompactness, concavity, concave points, symmetry, and fractal di-

ension) of the cell nuclei present in the image. For each char-

cteristic the data set includes three types of measurements: (1)

ean, (2) standard error, and (3) the mean just considering the

hree largest values for each image. In the plots we have appended

 numerical suffix to the names of the features to indicate the type

f measurement. Fig. 7 (a) shows an SRA plot when using the 30

eatures of the data set. In contrast to SC or ARA plots, features

ith long vectors can be easily detected in SRA, and discarded in

 backwards feature selection process. In this case, the axis vec-

or for ‘Symmetry1’ is clearly larger than the rest. This implies that

t barely affects the plot, and it is likely the least discriminative

eature. After discarding ‘Symmetry1’, the SRA plot is shown in

ig. 7 (b), where axis vectors related to ‘Smoothness3’, ‘Area1’, and

Concavity2’ are also longer than the rest. Thus, we can also omit

hese features by focusing on the lengths of the axis vectors, as-

uming it is appropriate according to domain knowledge. The re-

ulting plot is shown in Fig. 7 (c), where the locations of the points

re very similar to those in Fig. 7 (b). 

As previously indicated, the direction of an axis vector also con-

titutes a key factor regarding the importance of a feature in a

lot. Note that the low-dimensional points will move roughly in

he direction of an axis vector when the corresponding feature

s removed. Thus, for separating classes (or clusters) in the two-

imensional plot, we can also discard features whose axis vec-

ors are roughly perpendicular to the direction separating these

lasses, even if those axis vectors are short. Fig. 8 illustrates this

dea. In particular, Fig. 8 (a) is just a zoomed version of the plot

n Fig. 7 (c), where both classes are separated fairly well horizon-

ally. Observe that there are several axis vectors whose orientations

re roughly perpendicular to the class separation direction. There-

ore, although omitting them could originate large displacements

f the plotted points, the two classes should remain fairly sepa-

ated. Specifically, in the plot in Fig. 8 (b) we have removed the

eatures ‘Concave points1’ and ‘Concavity3’, which have relatively

hort axis vectors. The low-dimensional points therefore move ver-

ically, but this barely alters the overlap between classes. Instead,

n Fig. 8 (c) we have eliminated ‘Radius2’ and ‘Perimeter1’, since

heir axis vectors point in the separation direction. In this case, al-

hough their lengths are similar to those for ‘Concave points1’ and

Concavity3’, the points move roughly horizontally. This substan-

ially increases the overlap between the classes, which indicates

hat these features should belong to the final feature subset. 

The process can continue by considering the lengths and orien-

ations of other axis vectors (and possible domain knowledge), and

y analyzing the class separation in the two-dimensional plots. The

dea is to obtain a final subset of features that allows to separate

lasses reasonably well. Fig. 9 shows an example of an SRA plot
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Fig. 7. Interactive visual feature selection. SRA plots related to LMNN for the Breast Cancer Wisconsin Diagnostic data set: (a) considering all features, (b) after removing the 

‘Symmetry1’ feature; and (c) when removing features named ‘Smoothness3’, ‘Area1’, and ‘Concavity2’. 

Fig. 8. SRA plots related to LMNN for the Breast Cancer Wisconsin Diagnostic data set: (a) zoom of Fig. 7 (c); (b) effect of removing the ‘Concave points1’ and ‘Concavity3’ 

features in (a); (c) effect of discarding ‘Radius2’ and ‘Perimeter1’ in (a). 
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cular disease. 
where we have retained seven of the original thirty features of the

Breast Cancer Wisconsin Diagnostic data set. 

Lastly, we measure the quality of SRA projections for class sep-

aration as carried out in Leban, Zupan, Vidmar, and Bratko (2006) ,

by computing the leave-one-out accuracy of a voting k -nearest

neighbor ( k -nn) classifier ( Duda, Hart, & Stork, 2001 ) applied on

the plotted two-dimensional points. Specifically, we used k = 

√ 

N ,

where N is the number of samples in the data set, as suggested by

Dasarathy (1991) . Thus, for the Breast Cancer Wisconsin Diagnostic

data set we chose k = 24 , since it contains N = 569 samples. We

obtained a quality of class separation of 96.66% when considering

the plot in Fig. 7 (a) that involves all of the 30 features in the data

set. The score only dropped to 93.32% when considering the plot

in Fig. 9 , which uses the reduced set of seven features. 

4. Case study: analyzing chronic conditions 

In this section we describe a case study in which clinicians used

SRA for visual feature selection related to chronic conditions. 

4.1. Chronic conditions fundamentals 

Chronic diseases constitute a well-known problem in current

societies, mainly due to the major demographic changes through-

out the world over the past few years. On the one hand, the per-

centage of people over 65 years of age is expected to increase in

developed regions ( McNicoll, 2002 ). On the other hand, it is esti-

mated that by the year 2050 about 20% of the whole world popula-
ion will exceed 65 years. There are also clear positive correlations

etween age, chronic conditions, and the use of health services.

ccording to World Health Organization (2006) , chronic diseases

ccount for 60% of global deaths, and trigger 75% of public health

xpenditure. Therefore, it is important to determine the diseases

hat present the highest prevalence, and to identify the factors that

est characterize them. 

Two diseases that highly contribute to the complex chronic pa-

ient group are diabetes mellitus (DM) and high blood pressure

HBP, also called essential arterial hypertension). Not only are they

otoriously widespread, but their frequency increases with age,

nd patients maintain their chronic condition until their death.

pecifically, DM is one of the leading chronic diseases in devel-

ped countries. It entails many consequences, both from a clini-

al and social viewpoint, since it increases the risk of many seri-

us health problems. For example, vascular disease is the diabetes

omplication that can have a more severe prognosis, since it can be

ccompanied by damage to the coronary arteries, which may lead

o myocardial infarction or limb amputation. Other complications

f diabetes include kidney problems and blindness. HBP, which is

iagnosed when diastolic/systolic blood pressure is 140/90 mmHg

r greater, appears among 18% of those who suffer from chronic

onditions ( World Health Organization, 1999 ). It can be associated

ith the onset of other medical conditions such as chronic kidney

isease, and it is also related to DM. The simultaneous presence of

hronic diseases (comorbidities) can have dramatic consequences.

or instance, HPB in patients with DM raises the risk of cardiovas-
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Fig. 9. SRA plot illustrating class separation after selecting seven out of the thirty 

features of the Breast Cancer Wisconsin Diagnostic data set. 
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.2. Chronic conditions data 

In this case study we used data provided by Hospital Uni-

ersitario de Fuenlabrada (HUF) in Madrid, Spain. In order to

dentify patients with certain chronic diseases, a Patient Classi-

cation System (PCS) was applied. In essence, a PCS is a medi-

al decision tree with clinically validated rules, which groups pa-

ients according to their health status and resource consumption.

erlinguet, Preyra, and Dean (2005) analyzed different PCS and

oncluded that the so-called Clinical Risk Groups (CRGs) offered

he best performance according to three criteria: clinical relevance

f the grouping, resource prediction, and ease of use. This was the

eason for using the CRGs ( Averill et al., 1999; Hughes et al., 2004 )

o determine a patient’s health status. CRGs are hierarchically orga-

ized into nine core categories, from CRG-1 (healthy user) to CRG-

 (catastrophic). 

Our data set contains information relative to demographic fea-

ures (age and gender), diagnoses from primary and specialized

are centers, and pharmaceutical drug dispensation during one

ear. Diagnoses were coded by considering three digits, as stated

n the International Classification of Diseases, 9th revision, Clini-

al Modification (ICD-9-CM) ( Centers for Disease Control & Preven-

ion, 2011 ). Medical drugs were specified through five characters,

ccording to the Anatomical Therapeutic Chemical (ATC) Classifica-

ion System ( Norwegian Institute of Public Health, 2017 ) used in

urope. CRGs used this information to assign each patient to a sin-

le mutually exclusive health status or risk group. 

In this paper we analyzed three chronic conditions (i.e., cat-

gories): crg-5192 (HBP), crg-5424 (DM), and crg-6144 (DM and

BP). The first digit of the CRG-code refers to the core group, while

he next three digits are associated with the chronic condition cat-

gory. Specifically, HUF provided us with data of 17,792 patients

ssociated with the three chronic statuses of interest during the

ear 2012: 12,447 for crg-5192, 2166 for crg-5424, and 3179 for

rg-6144. Since class-imbalance is a well-known issue in medical

esearch ( Fernández-Sánchez et al., 2017; Soguero-Ruiz, Hindberg,

ora-Jiménez, Rojo-Álvarez, & et al., 2016 ), we adopted an un-

ersampling strategy taking into account the size of the minority

roup. Thus, we randomly selected 2166 patients from each group.
In a previous study we performed a descriptive analysis of diag-

osis codes and demographic features in the group of only chronic

ypertensive patients ( Fernández-Sánchez et al., 2017 ). Regarding

he features in the current work, we have also considered medi-

al drugs apart from diagnosis. Each code of diagnosis and medi-

al drug has been considered as a different feature. In particular,

ach patient is described by a total of 1517 features for diagnoses,

nd 746 for medical drugs. The features are integers that count

he number of times that a particular patient has been diagnosed

ith a certain condition, or has been dispensed a particular drug.

round half of the features had a zero count for every single pa-

ient, and were therefore discarded. In addition, we reduced the

ata set even further by computing the entropy gain of each fea-

ure according to Rauber and Steiger-Garção (1993) , and by select-

ng the 50 features with the highest gain. According to the domain

nowledge of the clinicians who participated in the case study, the

esulting subset of features contained the most relevant features

elated to the chronic conditions under study. 

.3. Visual feature selection with SRA 

Since the dimensionality of the data (50) is still high, further

eature selection procedures can be useful for identifying features

ith a greater clinical relevance for characterizing the chronic con-

itions. In our case study, the medical doctors used SRA, coupled

ith linear methods for classification, as a basis for performing a

equential backwards visual feature selection. Specifically, the goal

as to determine which features were more helpful for discrim-

nating between health statuses: (i) HBP, (ii) DM, and (iii) HBP

nd DM. Therefore, the clinicians used SRA to graphically identify

ifferent health groups, and to evaluate or confirm (in consonance

ith domain knowledge) the impact of each feature on the plots

esigned for class separation. Since clinicians were not experts in

ata visualization methods, we provided explanations of the main

roperties of SRA, as well as assistance throughout the process. 

Firstly, the medical doctors analyzed which features contributed

ore to distinguishing between the hypertensive and diabetic

roups (crg-5192 vs. crg-5424). This is the simplest scenario when

onsidering chronic conditions, since the health statuses are char-

cterized by only one chronic condition. Fig. 10 shows SRA plots

ssociated with the LMNN mapping of the (standardized) data set,

here the lighter (yellow) and darker (blue) points represent pa-

ients with DM, and HBP, respectively. In Fig. 10 (a) we used the

nitial 50 features. The clinicians then progressively discarded fea-

ures by relying on the visualizations and their own expertise un-

il obtaining the plot in Fig. 10 (b), which only contains 16 fea-

ures. The quality of class separation only decreased from a score

f 98.66% (when using the initial 50 features) to 98.61% when con-

idering just 16 features (in this case we used the voting 66 − nn

lassifier, since there are N = 4332 samples). 

The plot in Fig. 10 (c) is simply a zoom of Fig. 10 (b), where we

an gain insight regarding the most relevant features for classify-

ng patients with a single chronic condition. In this example, these

eatures are mainly those oriented horizontally, since classes are

eparated along that direction. For instance, the features related

o the drug codes ‘G04CA’ (alpha-adrenoreceptor antagonists) and

C09AA’ (angiotensin-converting-enzyme inhibitors, plain) point to- 

ards the crg-5192 class, as expected by the clinicians. Analo-

ously, several axis vectors are oriented towards the crg-5424 class.

heir contribution to the plots, as suggested by their lengths and

rientations, was in accordance with the clinician’s background

nowledge. For example, the axis vectors for drug codes ‘A10AB’

insulins and analogues for injection, fast-acting), ‘A10AE’ (insulins

nd analogues for injection, long-acting), ‘A10BA’ (biguanides), or

A10BD’ (combinations of oral blood glucose lowering drugs) all

ave positive components along the plot’s X axis, since they point
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Fig. 10. SRA plots related to LMNN for patients with hypertension (darker points, crg-5192) and diabetes (lighter points, crg-5424) considering 50 and 16 features, in (a) and 

(b), respectively. The plot in (c) represents a zoom of (b), and in (d) we show the (minor) effect of removing the feature ‘Age’. 
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towards the first quadrant. Thus, they are clearly related to dia-

betes. The feature for the diagnosis code ‘250’ (DM) also appears

pointing towards the diabetic group, and has a higher contribu-

tion than the ATC codes, since its axis vector is shorter. Clinicians

also suggested to retain the drug code ‘C10AA’ (HMG CoA reduc-

tase inhibitors) in spite of the long length of its axis vector, since

it could have some relation with diabetic patients. Finally, regard-

ing the ‘Age’ feature, the length of its axis vector is similar to that

of the remaining ones. However, it does not play a key role in sep-

arating the crg-5192 and crg-5424 groups, since its axis vector is

roughly perpendicular to the direction that separates the classes.

This also occurs for other features like the diagnosis code ‘401’

(essential hypertension). If the ‘Age’ feature is removed (as shown

in 10 (d)), the classes remain clearly separated, and the quality of

class separation is enhanced to 99.01%. 

For comparison purposes, in Fig 11 we show SC and ARA plots

related to the LMNN mapping, with the initial 50 features. In both

cases shorter vectors have a weaker impact on the resulting plots.

Thus, in practice it is required to zoom in several times to be able

to identify the features to be removed. In the example, the initial

SC plot is shown in (a), while (b) and (c) show 4x and 40x zooms,

respectively. Similarly, (d) is the initial ARA plot, while (e) and (f)
how 20x and 100x zooms, respectively. Observe that the axis vec-

ors (and the axis lines in ARA) overlap considerably, which makes

t difficult to visualize and select the shortest axis vectors. In addi-

ion, depending on the scale of the data, the projected points may

all outside of the plot. Thus, we can lose the overall picture of

he data set, which is necessary for considering the orientations of

he vectors (in this case, the direction that separates the classes).

n our experiments, all clinicians were able to immediately obtain

he longest axis (‘N02BB’) using SRA, and agreed to remove it (see

ig. 10 (a)). However, when using SC and ARA they had to zoom in

everal times, obtaining the plots in (c) and (f), before deciding on

he least relevant features. Most importantly, they did not agree on

he feature to be removed, as some vectors were of similar size. 

In the next study the data set was expanded by including a

hird health status encompassing both chronic conditions, diabetes

nd hypertension (crg-6144). In this case, we selected a total of

498 patients (2166 of each health status), and tested our ap-

roach by relying on the NCA mapping of the data set. Fig. 12

hows several SRA plots associated with NCA, where the lighter

yellow), darker (blue), and mid-color (green) points represent pa-

ients with DM (crg-5424), HBP (crg-5192) and both chronic condi-

ions (crg-6144), respectively. Similarly to the first study, we gen-
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Fig. 11. SC and ARA plots related to the SRA plot in Fig. 10 (a) with 50 features. The initial configuration of the SC plot is shown in (a), while (b) and (c) show 4x and 40x 

zooms, respectively. Analogously, (d) contains the initial ARA plot, while (e) and (f) show 20x and 100x zooms, respectively. On the one hand the axis vectors (and axes 

lines) overlap considerably. On the other hand, we can lose the distribution of the plotted points when zooming. 
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rated an initial plot by using all of the 50 features, as shown in

ig. 12 (a). The quality of class separation according to a nearest

eighbor classifier was 92.67% (we used k = 81 , since N = 6498 ).

ubsequently, the clinicians progressively eliminated features by

elying on the visualization and their domain knowledge until ob-

aining the plot in Fig. 12 (b), which only contains 9 features and

rovides a quality of class separation of 87.17%. 

We can observe the axis vectors (and their contribution) more

learly in Fig. 12 (c), which is a zoom of Fig. 12 (b). On this oc-

asion, clinicians did not select the diagnosis code ‘401’ because

here were other features with more influence for separating both

roups. Instead, although in the first study the drug code ‘C10AA’

HMG CoA reductase inhibitors) did not contribute much in distin-

uishing between hypertensive and diabetic patients (according to

he layout of vectors obtained when reproducing LMNN), the clin-

cians suggested to retain it since in their opinion it had a clear

elation to diabetes. In this case, it is apparent that the feature

C10AA’ is key for separating the groups (note that its axis vec-

or is one of the shortest ones). This confirms the medical knowl-

dge that reductase inhibitors are related to diabetic patients. Like-

ise, the feature ‘Age’ does have a strong impact on class sepa-

ation, since individuals in CRGs with chronic comorbidities (crg-

144) tend to be older than patients with just one chronic condi-

ion (crg-5192 or crg-5424). ‘Age’ is especially relevant for patients

ith diabetes, which supports existing knowledge about juvenile

iabetes. Finally, in order to visually confirm the importance of

oth features (‘C10AA’ and ‘Age’) we discarded their axis vectors.

he resulting plot is shown in Fig. 12 (d), where the lighter (crg-

244) and mid-color (crg-6144) classes clearly overlap. In this case,

he quality of class separation dropped to 75.45%. 

p  

e  
The study carried out, involving clinicians and a real medical

ata set, shows that SRA can be a valid tool when it is used by

omain experts without previous experience in interactive visual

ata analysis tools. The visualizations have allowed the clinicians

t HUF to confirm previous medical knowledge, and to obtain new

nsight into the area of application. 

. Discussion 

In practice, analysts can use radial axes plots for visual feature

election by studying the impact of the features on a plot. How-

ver, it is problematic to use these visualizations in a sequential

orward selection process, mainly due to the large number of plots

hat users would have to analyze. Note that having a subset of

 < n features, it would be necessary to visualize the n − m ad-

itional plots that include one more feature in order to expand the

ubset. Since this procedure would be carried out multiple times,

he number of visualizations would be excessive in a practical set-

ing. In particular, this approach would require (m + 1)(n − m/ 2)

isualizations for obtaining a subset of m features. Alternatively,

sers in a sequential backwards elimination procedure analyze a

ingle plot to discard one of the features. Thus, this approach re-

uires analyzing n − m visualizations in order to choose a subset

f m features, which is much smaller than the number required by

he sequential forward selection scheme. Thus, if m is some per-

entage of n (i.e., αn = m, with α ∈ (0, 1)), then the forward selec-

ion strategy requires on the order of n 2 visualizations, while the

ackwards approach needs on the order of n plots. Moreover, when

erforming a backwards selection it is also possible to identify an

ntire group (i.e., set) of features to discard by analyzing a single
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Fig. 12. SRA plots related to NCA for patients with just hypertension (darker blue points, crg-5192), just diabetes (lighter orange points, crg-5424), and both comorbidities 

(mid-range green color, crg-6144) considering 50 and 9 features, in (a) and (b), respectively. The plot in (c) is a zoom of (b), and in (d) we show the (strong) effect of 

removing the features ‘Age’ and ‘C10AA’. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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plot, which can speed up the selection process notably when the

initial number of features is large. 

In SRA a backwards feature selection is implemented by remov-

ing longer axis vectors, which are easy to spot. In SC and ARA

it is possible to perform a similar feature elimination by discard-

ing shorter axis vectors. However, as shown in Fig. 11 , it is more

difficult to identify these axis vectors. In practice, analysts may

need to zoom in on the plots considerably, which is not only time-

consuming, but the overall view of the data can be lost in the re-

sulting graphic, since many of the projected points may not appear

in the plot. Therefore, in SC and ARA it can be harder to take ad-

vantage of the directions of the axis vectors. 

Although methods based on radial axes can represent as many

variables as desired, in practice n is usually small (see ( Chen &

Liu, 2004; Gabriel, 1971; Kandogan, 20 0 0; 20 01; Sun, Yuan, Hu,

& Xiao, 2008; Tsai & Chiu, 2008; Zhang, Orgun, & Zhang, 2006 )).

Note that if n is large a feature reduction process would be time-
onsuming and cumbersome, mainly due to the overlap between

he axis vectors. In that case one solution consists of carrying

ut a preliminary feature reduction with an automatic method (in

ection 4.2 we have used the entropy gain to reduce the number of

eatures). Another possibility is to generate an SRA plot and elimi-

ate the features related to long axis vectors, according to a length

hreshold, or to a particular number of features the analysts may

ish to retain before applying the proposed feature reduction ap-

roach. Another limitation of the approach is related to the type

f data it can support. In particular, all of the radial axes methods

escribed in this paper require using numerical data (it is possible

o use binary features). 

In order to evaluate the method’s potential for data analysis, we

ave developed a data visualization prototype in MATLAB® using

he toolbox for dimensionality reduction ( Maaten, 2015 ). In prelim-

nary usability tests, users were able to carry out: i) tasks directly

elated to the technique like classification, clustering, feature selec-
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Fig. 13. Average runtimes for computing the axis vectors ( V ) given some initial linear transformation matrix through (9) and (10) , and for calculating 10 0 0 0 embedded 

points ( P ) through (6) . 
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ion, outlier detection, or attribute value estimation; and ii) other

asic data analysis tasks like those described in Amar, Eagan, and

tasko (2005) and Yi, ah Kang, Stasko, and Jacko (2007) , such as

etrieving values, determining correlations, filtering, etc. 

Regarding the efficiency of the approach, it is worth mention-

ng that the key factor depends on the computational cost of the

hosen linear method (e.g., LDA, LMNN, NCA, etc.), which provides

 particular 2 × n matrix A . The process of determining the axis

ectors V through (9) and (10) , as well as computing the embed-

ed points ( P ) through (6) can be carried out in the order of mi-

roseconds, even for a large number of features ( n ), since these

perations can be carried out in linear time with respect to n .

ig. 13 shows average runtimes needed to compute V given some

andom initial matrix A , and to project N = 10 0 0 0 random high-

imensional points ( X ), for several values of n . The results were

veraged over 10 0 0 trials, and the components of A and X were

rawn from a standard normal distribution. In particular, the sim-

lation was carried out on a personal computer with a fourth gen-

ration Intel® Core TM i7-4712HQ 3.3 GHz processor and 16 GB of

AM. It is apparent that the calculations can be carried out in real

ime. 

Finally, the proposed visualization method is an exploratory

ata analysis tool that can lead to interesting and possibly unex-

ected discoveries in an overview phase of a data mining process

 Shneiderman, 1996; Witten & Frank, 2005 ). However, it is worth

ointing out that analysts must confirm the findings through ap-

ropriate statistical and scientific procedures. In this regard, the

nsight obtained through the user study with chronic conditions

ata only provides an initial guidance for a further analysis, which

s clearly out of the scope of the paper. 

. Conclusions 

This paper has introduced and analyzed a multivariate visual-

zation method called SRA, which is based on a set of radial axis

ectors that represent data features, and can generate any linear

rojection of high-dimensional data points onto a two-dimensional

lane. On the one hand, unlike SC, SRA plots allow users to approx-

mate high-dimensional data values. On the other hand, in compar-

son with ARA, SRA provides less cluttered plots, and allows users

o analyze the axis vectors and all of the projected points simul-

aneously. Moreover, in SRA longer axis vectors generally represent

eatures that have a smaller influence on a projection. Since it is

asier to identify these vectors, the technique can be used to carry

ut an interactive backwards feature selection effectively, where

sers progressively eliminate vectors from the plots. Additionally,

n contrast to other works in the literature, we argue that analysts

hould consider not only the lengths of the axis vectors, but also

heir orientations, and expert domain knowledge. 
In particular, we have used SRA to carry out visual feature se-

ection procedures with a real-world data set associated with med-

cal chronic conditions of high prevalence in our society. Results

how that SRA allows us to visualize groups of chronic patients

ith one or two chronic conditions (DM and/or HBP), while show-

ng the contribution of different clinical features for discriminat-

ng among health statuses. These kinds of visualizations, which

n principle are designed for performing exploratory data analy-

es, can be very valuable for experts in the clinical domain. In

articular, the visual identification of drugs and diagnoses some-

ow related to chronic conditions may be of great value for a bet-

er understanding of these conditions, and may even reveal poten-

ial new relationships among diagnoses and drugs. Therefore, the

ethod proposed in this work can be of great help to clinicians

nd health managers for planning care and health resources alloca-

ion. This could lead to an improvement of the health care system,

oth from an economical and social point of view. 

Finally, as future research, we plan to work with time series

ata in order to find chronic patient trajectories. This could al-

ow experts to identify the risk factors associated with the onset

r evolution of a chronic condition. As a consequence, health man-

gers could establish prevention programs according to the risk of

 patient of suffering certain conditions. 
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