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Abstract
Data analysis often involves finding models that can explain patterns in data, and reduce possibly large data sets to more
compact model-based representations. In Statistics, many methods are available to compute model information. Among others,
regression models are widely used to explain data. However, regression analysis typically searches for the best model based on
the global distribution of data. On the other hand, a data set may be partitioned into subsets, each requiring individual models.
While automatic data subsetting methods exist, these often require parameters or domain knowledge to work with. We propose a
system for visual-interactive regression analysis for scatter plot data, supporting both global and local regression modeling. We
introduce a novel regression lens concept, allowing a user to interactively select a portion of data, on which regression analysis
is run in interactive time. The lens gives encompassing visual feedback on the quality of candidate models as it is interactively
navigated across the input data. While our regression lens can be used for fully interactive modeling, we also provide user
guidance suggesting appropriate models and data subsets, by means of regression quality scores. We show, by means of use
cases, that our regression lens is an effective tool for user-driven regression modeling and supports model understanding.

Categories and Subject Descriptors (according to ACM CCS): G.3 [Computer Graphics]: PROBABILITY AND STATISTICS—
Correlation and regression analysis

1. Introduction
In the big data era, relevant data is constantly growing in many
domains and visual-interactive techniques are becoming more and
more important. There already exist techniques that help analysts
to explore and explain different types of data, in different appli-
cation domains. The scatter plot is a well-known basis technique
to explore correlations, trends and clusters in bivariate data. Ex-
ploration with scatter plots can benefit from interest measures like
Scagnostics [WAG05] or regressional features [SBS11], to search
and identify informative views in larger sets of scatter plots, e.g., a
scatter plot matrix (SPLOM).

An interesting extension for analysis of scatter plots is investiga-
tion of local patterns in single projection views [SSB∗16, JSG16,
MG13]. Prior research has shown that multivariate data sets may
contain locally valuable information that has to be extracted and
properly visualized. In this regard, local patterns can be represented
by local regression models that in sum can describe a global scatter
plot of a set of local models. The analysis of local regressions, also
known as segmented regression [WSZRD02], plays an important
role in statistic modeling and is used to find substantial changes in
relationships among variables. Therefore one dimension, usually
the independent variable, has to be partitioned into intervals for
computing the local models. But typically, the partition breakpoints
are not known before the analysis and have to be estimated.

Automatic approaches for building regression models are typi-
cally limited with respect to incorporating domain knowledge in
the process of selecting input variables (also known as feature sub-
set selection). Furthermore, the data must either be labeled or well
clustered to compute local regression models automatically. How-
ever, there are many clustering algorithms and parameterizations to
choose from, which in practice often result in many possible, differ-
ent cluster segmentations. The challenge here is to choose the best
clustering algorithm including the parameter setting for a given data
set. Other potential limitations of algorithmic local regression anal-
ysis include the identification of local structures, transformations,
and interactions between variables.

In this paper, we focus on the visual-interactive extraction and rep-
resentation of local regression models in scatter plots. We introduce
regression lens, a novel concept for visual-interactive regression
analysis that allows users to select a portion of data on which they
want to conduct regression analysis. The lens can be interactively
modified in terms of position or size, to find the best fitting model
for areas of interest. Detailed interactive feedback allows to com-
pare different models and data selections effectively. Using our
regression lens, users can explore scatter plots in a novel way and
are enabled to investigate a plot by their individual constituents of
regression models. Based on a best-fit algorithm including data sam-
pling and cross-validation, we determine the best coefficients for the
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selected data independent of the model direction i.e., fy(x) or fx(y).
We provide a set of appropriately defined and visualized statistical
measures, for judging the quality of candidate models. Moreover, a
selection guidance concept helps to optimize the selection area of
the lens by indicating outliers and suggesting translation directions
along which regression model quality can be improved.

The remainder of this paper is structured as follows: In Section 2,
we discuss related work. Section 3 gives an overview of our regres-
sion lens approach and describes challenges in regression-based data
analysis. Section 4 introduces our prototype system including an
implementation of the regression lens concept and its usability. Next,
in Section 5, we apply our approach to different data sets and show-
case the exploration benefits. Limitations and possible extensions
are discussed in Section 6. We, finally, conclude in Section 7.

2. Related Work
Our work relates to local data pattern analysis, feature extraction
and interactive lens techniques for scatter plot visualizations. We
present an overview of works next.

2.1. Correlation Analysis and Feature Extraction
In scatter plot analysis advanced data analysis tasks, such as fea-
ture computation, pattern extraction or statistical analysis, require
important initial steps of assessing correlations, trends and clusters.
Regression analysis is widely used to explore statistical relations
between selected pairs of variables. In [Ans73], Anscombe explored
the importance of graphs, and looked into the usefulness and im-
portance of statistical analysis of scatter plot data using regression
analysis. Nowadays, data analysis tools like Tableau† are available
that provide such analysis possibility but, to date, are limited in
focus-plus-context techniques such as interactive lenses.

An interactive framework for building and validating regression
models is presented by Mühlbacher et al. in [MP13]. The frame-
work helps analysts to understand relationships between observed
variables and a dependent target variable, and explains the most use-
ful feature and its partitions by using a regression model. Another
related work is [GWR09]. There, Guo et al. defined model space
visualizations including heatmap-based displays, which help iden-
tify linear dependencies for multivariate data. Li et al. [LMvW10]
conducted a study about the effectiveness of judging correlations
in scatter plots. It turned out that scatter plots are more effective in
supporting visual correlation analysis than parallel coordinate plots.

For high-level analysis tasks, a combination of techniques from
data mining and interactive visualization can be applied to facili-
tate finding patterns in possibly large data. For instance, Scagnos-
tics [WAG05] characterizes the global distribution of points based
on geometrical and topologic properties. Specifically, nine features
including density, shape, stringiness and outlier measures are de-
fined. These features can serve to rank and select plots for interactive
inspection. In [SBS∗14], image-based descriptors are used to search
for scatter plot patterns based on user sketch queries. The similarity
between a scatter plot pattern and a user sketch is measured by the
density of points and the frequency of different edge orientations
in the image space. Scherer et al. [SBS11] presented a scatter plot
descriptor based on regression features for comparing scatter plots

† https://www.tableau.com

with each other. Specifically, they proposed a feature vector based
on the goodness-of-fit of a set of globally applied regression models.

A well-known problem of scatter plots is the degree of overdraw
on local regions as the number of points increase. To tackle this
problem, hexagonal binning [CLN86] can be applied, encoding point
density with a colormap within hexagonal binning regions. Further,
Mayorga and Gleicher [MG13] developed an abstraction approach
to automatically group dense data points, and used color blending
and contour lines to reveal hidden data distributions. In [CCM∗14], a
hierarchical multi-class sampling technique is used which simplifies
the distribution by preserving relative density features.

Besides visual abstraction approaches, an investigation of local
patterns can also be helpful to reveal further insights, which may
be hidden in the overall view. For instance, scatter plots could be
extended by sensitivity coefficients to visualize local variation of
one variable with respect to another [CCM10]. They represent the
sensitivity information as velocities so that the resulting visualiza-
tion resembles a flow field. In [JSG16], a method is presented to
emphasize a local area of interest based on depth of field and a
multidimensional focus selection body. In [SSB∗16], a scatter plot
interest measure is presented, which is based on an adapted tf×idf
approach computed over sets of local clusters. This measure is used
to rank scatter plots based on the frequency of local patterns, useful
to propose views to a user from a large scatter plot view space.

For high dimensional data sets, scatter plot matrices [CLN86] in
combination with the brushing and linking technique [BC87] may be
useful for finding related patterns across multiple scatter plot projec-
tions. Alternatively, the point distribution of multivariate data can be
displayed onto 2D planes by using radial projection-based visualiza-
tion techniques like Radviz [HGM∗97] or Star Coordinates [Kan01].
The effect of judging correlations for these projection-based visu-
alizations are published in [Nv06, Nv09]. In [LKZ∗15], guidance
pictograms are presented to support standard visual search tasks,
such as correlation and distribution analysis, for projections like
scatter plots, Radviz and Star Coordinates.

2.2. Interactive Lens Techniques
To interactively explore local scatter plot regions for interesting
patterns, virtual lens techniques like magic lens or magnification
lens may be used [BSP∗93, LHJ01], which provide on demand an
alternative visual representation of the underlying data. There al-
ready exist a number of different interactive lens techniques for
various application and data domains. For instance, there are lenses
to show temporally aggregated information of trajectory data (time
lens [TSAA12]), to explore multivariate network data (network
lens [JDK10]) or to magnify volumetric features in 3D representa-
tions (magic volume lens [WZMK05]).

Moreover, there are specific lens techniques to support the anal-
ysis of multivariate data in scatter plot visualizations. Ward and
Yang [WY04] have presented an overview of interaction operations
that can occur in data and information visualization including lens
techniques (distortion) for scatter plot matrices. To overcome the
overdraw problem Ellis et al. [EBD05] have introduced sampling
lens, which estimate a suitable sampling rate for the underlying selec-
tion and shows a clutter-reduced representation. SemLens [HLTE11]
is another lens technique for scatter plots, which assists local anal-
ysis by adding further analytical dimensions to certain regions of
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the scatter plot. A structure-based semantic lens for scatter plots and
graph layouts is presented in [HTE11]. This lens technique keeps
the selected data records –under the lens surface– unchanged and
continuously deforms the data out of the focus in order to maintain
the context around the lens. Bertini et al. [BRL09] have introduced
an extended excentric labeling lens which dynamically displays
labels to the selected data records around the lens. In [LT16], a
data-dependent magic lens is presented to minimize the projection
related distortions in Radviz and Star Coordinate visualizations. A
survey on visual interactive lens and distortion-oriented presentation
techniques are given in [TGK∗14, LA94]

2.3. Delineation and Our Contribution
Previous works have defined useful methods to visualize correlations
and features to rank and select scatter plot patterns. Also, several
interactive lenses for scatter plot visualizations introduce distortion
or sampling techniques to support the data exploration process by
preserving an overview of the data during drill-down operations.
Our approach is novel in that we extend the scatter plot lens concept
to compute and visualize in interactive time candidate regression
models for user-selected subsets of data. Our tool supports modeling
of data by sets of local regression models, hence contributing a novel
tool for scatter plot analysis.

3. Concept of the Regression Lens
Next, we describe basic concepts and issues of regression-based
data analysis. We will then derive our interactive regression lens
concept and its visualization building on these concepts.

3.1. Regression in Practice
We start with relevant background knowledge for univariate re-
gression analysis of data: Given a 2D set of data elements pi =
(xi yi)

T ; i = 1, . . . ,m with P = (p1 . . . pm). A regression model
is a function y = f (x) explaining the data elements (xi yi)

T best.
Figure 1 illustrates this regression model concept.

y=f(x)

Regression
Model

Data P
independent variable

dependent variabley

x

positive non-linear negative non-linear

Figure 1: Regression models: (left) linear and (middle-right) non-
linear models (blue) to explain the data (black).

The idea of univariate regression data analysis is to find a functional
relation in the data. It allows to compare different data sets with
each other, it supports to have options to compress or to classify
the data, and it mutually binds two (or more) variables with each
other, which were unrelated and independent before. Finding these
phenomenological relations between variables/dimensions is the
most relevant aspect of a regression-based data analysis.
Typically used univariate regression models are exponential models

y(x)e = βe1 ·e
βe2 x,

logarithmic regression models

y(x) = βl1 +βl2 · ln(x),

power fit regression models

y(x)p = βp1 ·x
βp2 ,

or polynomial regression models of degree n

y(x)n =
n

∑
i=0

βi·xi = βββ·x, βββ = (β0 . . .βn), x = (x x2 . . .xn), (1)

where the parameters βi are called regression coefficients, while x is
the independent and y the dependent variable.
The polynomial regression model is appropriate to substitute or
mimic a set of further models. In fact, the power fit y(x)p is a subset
of y(x)n=βp2

, positive exponential models y(x)e can be approximated
with y(x)3, etc. Since a wide area of regression cases is covered, we
focus on the family of polynomial regression models in this work.
In this regard,

y(x)1 =
1

∑
i=0

βi·xi = β0 +β1·x1 is called a linear model,

y(x)2 =
2

∑
i=0

βi·xi = β0+β1·x1+β2·x2is called a quadratic model, and

y(x)3 =
3

∑
i=0

βi·xi = β0+β1·x1+β2·x2+β3·x3 is called a cubic model.

The estimation of a good regression model comes with a set of
issues to be handled, which are denoted as the issue of underfitting
vs. overfitting, independent vs. dependent variable, and uniformity
vs. clumpiness. Subsequently, we introduce and discuss these issues.

3.2. The Regression Issues
We describe common issues when using regression in practice.

Underfitting vs. Overfitting: A model is well chosen if it fits the
data and if it is the simplest model for doing so. To fit the data, the
in-sample error e( f ) for model f is

e( f ) =
m

∑
i=1

(yi− f (xi))
2, (2)

also known as sum of squared errors (SSE). An appropriate model
f minimizes e( f ) to prevent data underfitting. See Figure 2 (left-
middle), where e is stressed by red lines.

yj

xj
f(x )j

yj

xj

f(x )j

Underfitting Good fit Overfitting

y(x)m>polynomial modely(x)2>quadratic modely(x)1>linear model

Figure 2: Underfitting vs. Overfitting

In contrast, choosing the simplest of such in-sample error minimiz-
ing models prevents overfitting: “simple” is such a model with a
small complexity, e.g., a small number of regression coefficients βi.
In fact, considering a number of m data points, with yi(xi) 6= y j(x j);
there is always a polynomial y(x)n of degree m fitting the data per-
fectly (i.e., it interpolates the data), with e(y(x)n=m) = 0 (see Fig-
ure 2 (right)). Does it mean that y(x)n=m is still the optimal model?
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For obvious reasons, this is not the case: this model is not simple but
complex with a large number of m parameters βi, i = 0, . . . ,m; the
model has a large waviness and thus it is also geometrically com-
plex; and for each new data element, every time the model requires
one new term and one more regression coefficient –which does not
seem to be plausible at all– known as overfitting.

To prevent overfitting, a model y(x)n = fn of degree n is assigned
with the out-of-sample error o( fn) given as:

o( fn) =
1
2
·

m

∑
j=0

( f P1
n (x j)− f P2

n (x j))
2, (3)

where P1,P2 are subsets of P. These subsets are mutually disjoint
with P1∩P2 = ∅, have a similar number of elements –ideally each
set has a number of m/2 data representatives, i.e., P1 ∪P2 = P–
and each subset should have a similar distribution behavior as P
in order to mimic its statistical properties, making a comparison
fair. When using more than two disjoint subsets, i.e. P1, ...,Pk, the
out-of-sample error o is given by averaging. Then, a good model fn
preventing overfitting minimizes o( fn), known as cross-validation.
In total, an optimal model f is given by the optimization process for
in-sample error e and out-sample error o as

fn with argmin
βββ,n

(o( fn)+ e( fn)). (4)

Independent vs. Dependent Variable: The choice of the indepen-
dent variable for model f is arbitrary. Clearly, both options are
reasonable: either choosing y = fy(x) or choosing x = fx(y) as de-
pendent or independent variable. A concept to describe the influence
of the chosen independent variable is the correlation.

a

|corr|=0.0 |corr|=1.0|corr|=0.7

a

f (x)y

f (y)x

Figure 3: Correlation: influence of the chosen independent and
dependent variable to the appearance of a linear regression model.

The correlation corr(x,y) is a measure describing how unimpor-
tant the choice of direction is, so fy(x) or fx(y), because both
choices lead to the same image of the function. If |corr(x,y)|= 1,
it means that fy(x) and fx(y) look identical, while |corr(x,y)| = 0
means that both directions are unrelated and look different. For
a linear model y(x)1, the correlation is described by the angle α

spanned in between fy(x) and fx(y), giving the correlation measure
corry1(x,y) = cov(x,y)/(σ(x)σ(y)), with the covariance cov and
the standard deviation σ. So, if α = 0 then corry1 is 1, if α = π/2
then corry1 = 0. Figure 3 illustrates this. A generalization of this
correlation concept for higher order models is known by

corr(x,y)yi =

√
1− SSE

SST
=

√
1− e

SST
=

√
1−

∑
m
j=1(y j− f (x j))2

∑
m
j=1(y j− y)2

with

y =
1
m

m

∑
i=1

f (xi).

The correlation measure is an important information in order to
judge the quality of a regression model.

Uniformity vs. Clumpiness: One last issue is that the data along
a good model ought to be uniformly distributed. In fact, a model
may run through different clusters in the data, raising the question
how good a model is that would connects clusters of data. Not
quite good we argue, as (i) such a model is locally influenced by a
varying information density (dense areas and sparse areas), which
sophisticate the model, and as (ii) two or more clusters are generally
not well described by one model (see Figure 4).

Global Analysis Global Analysis Local Analysis

Figure 4: Uniformity vs. clumpiness or global vs. local analysis.

For two clusters, two models (one per cluster) seem to be a better
choice in terms of fitting the data, which also motivates our concept
of a local analysis with our regression lens. However, to measure
the distribution of the involved data along the model’s pathway, we
define a distribution measure h( f ) of the non-uniformity for the data
elements of model f as

h( f ) =
1
2
·(hx +hy) (5)

where hx and hy are the deviations of the discrete uniform distribu-
tion P(X = xi) =

1
n for i ∈ {1, ...,n}. The deviation of the uniform

distribution is defined by the goodness of fit measure, which is
the sum of differences between observed and expected outcome
frequencies of an interval i as

hx =
n

∑
i=1

(Oi−Ei)
2

Ei
(6)

where Oi is the number of observations in interval i and Ei is the
expected number in interval i on the x-axis and y-axis respectively –
known as χ

2-distribution. A model is considered to be more appro-
priate if it minimizes h( f ).

Note that our lens concept handles all these issues by using appropri-
ate visualization concepts, allowing to observe and compare the qual-
ity and applicability of regression models for interactively selected
data. The following section describes how our lens is constructed,
handling issues of overfitting/underfitting, dependent/independent
variables, and uniformity/clumpiness.

3.3. Construction of Regression Models for our Approach
By considering our data (xi yi), i = 1, . . . ,m, we define the (n+1×
m) power data matrix X as

X =


1 x1 x2

1 . . . xn
1

1 x2 x2
2 . . . xn

2
...

...
...

. . .
...

1 xm x2
m . . . xn

m,

 (7)
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and write the polynomial model y(x)n with y = (y1 y2 . . .ym)
T as

the linear system

y = X·βββ+ e (8)

for which the in-sample error e( f ) = ∑(yi− f (xi))
2 = ∑e2

i , ei ∈ e
is minimized by solving the linear system [Fre05], e.g., by choosing
the regression coefficients βββ as

βββ = (XT X)−1XT y. (9)

Please note that the inverted matrix, Xinv = XT X, is a (n+1)× (n+
1) matrix, is not growing with the number m of considered data but
only with the degree n of the polynomial regression model y(x)n. For
instance, Xinv is a 2×2 for linear models y(x)1, 3×3 for quadratic
models y(x)2, 4×4 for cubic models y(x)3 etc. Thus, inverting Xinv
and solving Eq. (9) is a cheap operation as long as the polynomial
degree n is not too big. From our experience, a regression model
fitting the data well has usually a degree less than n≤ 5.

To find an optimal model, our approach solves the optimization
process of Eq. (4) within a two-step process.
Step 1: To minimize the in-sample error e, our technique considers
a set of k different polynomial regression models y(x)1, . . . ,y(x)k
and ranks them regarding their minimized in-sample errors e, e1 <
· · ·< ek. Figure 5 (left) illustrates the first step.
Step 2: From the ranked regression models, we consider a number
kT of the best ranked models as candidates and select the candidate
as optimal which has the minimized out-sample error o( f ) in the
list of candidates. To compute o( f ) for the different candidates, our
approach uniformly samples the data P to get the subsets P1 and P2,
as is seen in Figure 5 (right).

e(f) y=f(x) o(f)
e1
e2
e3
e4

ek

ya
yb
yc
yd

ye

kT x1
y1
x2
y2
x3
y3
x4
y4
x5
y5
x6
y6

xm
ymP=

se
le
ct
y=
f(
c)
w
it
h
m
in
o(
f)

1 2

uniform samples

P1

P2

Figure 5: Two step process to find the best fitting regression model.

If k = kT , the ranking process in step 1 is not required. For proof of
concept, we do so by choosing k = kT = 4, i.e., we consider only
polynomial regression models up to degree 4, from which we choose
the one with the smallest out-sample error as optimal.

Finally, for the purpose of later use, from the chosen model
y(x) = fy(x) our approach calculates the correlation corr(x,y), the
model fx(y) by switching dependent & independent variables and
uniformity properties, as described above. By having the regression
model and the attributes, we are prepared to subsequently explain
our visual design for the regression lens.

3.4. Visual Design of our Regression Lens
To select a subset of data elements for our regression lens, a box,
circle, free-form, or a manual selection can be basically used, illus-
trated in Figure 6 (a-c). In that regard, a circle or free-form selection
does not naturally yield axially parallel edges that are required to
further visualize dimension-wise aligned (statistical) information.
Moreover, a free-form selection causes an additional cognitive effort
and a lot of further interaction steps, which may be exhausting. On

x xr r

Box Circle Manual

Regression Lens

Data

Histogram of Selected Data

0 0.3 0.7 1
Correlation

f (y)xf (x)y

x

y

y

x

f (y)x

f (x)y

(a) (b) (c)

(f)(e)(d)

(g)

Figure 6: Visual Design of the Regression Lens.

the other side, a manual selection is too expensive and time consum-
ing if a large number of data points need to be selected. We like to
keep it simple for proof of concept. Thus, considering these reasons,
we rely in this work on a rectangle selection by a simple user mouse
drag operation. However, integration of further interaction schemes,
if needed is straightforward to do.

With the rectangle selection scheme, the user selects a subset of
data elements, to which regression analysis, quality computation
and optionally, user guidance regarding improvement possibility is
applied. Please note that by the choice of a rectangle, the “locality
vs. globality” level of the analysis is implicitly user-defined.

As already explained, both variables x and y can be seen as a
correct choice for the independent variable for the univariate poly-
nomial regression, and both models fy(x) and fx(y) are correct in a
way. This is also justified by the fact that a plot pxy for any dimen-
sion x and y of the SPLOM is equivalent to the transposed version
of the plot for the dimensions y and x, i.e., pT

yx = pxy where variable
x and y are interchanged. Consequently, an order of the variables
does not exist by nature. Figure 6 (d,e) illustrates this. Thus, our
approach needs to draw both found regression models in the lens
selection area, to allow a complete insight for the users. While fy(x)
can be drawn with standard techniques in the x-y-space, an inverse
of fx(y) (which is given in y-x-space) does not necessarily exist.
Thus, our approach exploits the symmetry that point (y,x) for fx(y)
is equivalent to point (x,y) in the space of fy(x), to draw fx(y) in
x-y-space: (y,x) fx(y)→ (x,y) fy(x) (see Figure 6 (f)).

To judge distribution properties, our approach visualizes a normal-
ized histogram for each variable on the boundaries of the selection
box (see Figure 6 (g)). Since the boundaries of the selection box are
axis-parallel and thus assigned to the variable directions of the plot,
the histograms can easily be mentally connected with the variables.
This also motivates to use a box selection instead of other options.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Shao et al. / Interactive Regression Lens for Exploring Scatter Plots

Due to the fact that the color for the histogram bins and the
boundaries of the box are free usable visualization parameter, our
approach maps correlation values to discrete colors. Specifically,
corr(x,y)< 0.3 is mapped to red, 0.3≤ corr(x,y)< 0.7 is mapped
to orange, and 0.7≤ corr(x,y)< 1.0 is mapped to green, to visually
stress the level of correlation. Note that this is a pragmatic choice
and other color mapping schemes, including continuous mappings,
are possible in principle.

As part of our concept, both directions fy(x) and fx(y) of the
respective optimal polynomial regression model are drawn, as well
as both univariate histograms for x and y. In addition, we show the
correlation information corr(x,y), as can be seen in Figure 6 (g).

To distinguish the different directions of the drawn models, we
color models of fy(x) in blue and models of fx(y) in red (shown in
Figure 6 (d - f)). Furthermore, we provide another optional color
coding to directly visualize the in-sample error on the models’ path-
way. By means of this visual feature, users can quickly identify the
quality of the regression model according to the selected points.
Therefore, we compute the Euclidean distance of the model’s path-
way to the nearest point and map the distance by using a diverging
red-green color coding, as demonstrated in Figure 7(b) – bottom
lens. Moreover, users can compare the in-sample errors of differ-
ent models (e.g., linear vs. quadratic) and spot unsuitable parts on
the models’ pathway. This support users e.g., to split inappropriate
selections (colored in red) into individual subsets for modeling.

4. System Overview & Selection Guidance
In this section, we present the design implementation of our regres-
sion lens concept and introduce a guidance component that supports
finding appropriate lens selections. Figure 7 shows our design.

4.1. System Design
To analyze scatter plots from high-dimensional data sets, we present
all pairwise combinations of dimension variables in a SPLOM, as
shown in Figure 7(a). Data points which belong to a particular class
label (if available) are visualized by different colors and can be
filtered out for further investigation. The user selects one cell (plot)
from the SPLOM which is shown in detail in (b). The result of
regression analysis for interactively selected data subsets is shown
directly on the lens in this view (Figure 7(b)). Individual settings
for local lenses, such as model selection, activating distribution his-
tograms or class label filtering, can be performed in the setting view
(Figure 7(c)). Moreover, the user can save interesting findings and
previous settings of lenses in this view. Detailed information about
the current lens selection is shown in Figure 7(d). This informa-
tion includes selected points, boundaries of the area and statistical
measures like corr(x,y), e( f ) and h( f ) values.

For specific analytical tasks, users can limit the degree of the
model and manually switch between the polynomial models as well
as the direction of the model fy(x) and fx(y). Alternatively, users
can let the system choose the best fitted model and the direction
according to the selected points. If both directions are simultane-
ously drawn, the system automatically reduces the saturation of
the less fitting direction to highlight the better model, as shown in
Figure 7(b). To measure the best model and direction respectively,
the e( f ) values of each combination can be compared.

Since the computation of the distribution measure h( f ) depends

on the histogram bin size, we not only allow users to adjust this
parameter setting but also provide an automatic selection based
on the equal-width binning approach. For automatic selection, we
determined the bin size by the square-root choice that takes the
square root of the number of samples in the lens. By this way, the
comparison of different local lenses is not influenced by the sizes of
the lens.

By default, we color-code points selected inside the lens box in
green. The cross-validation subset is coded in dark blue, and the
regression models in red and blue, respectively. All color-schemes,
for the figures in this paper and the application, are taken from Col-
orbrewer [HB03]. These color settings can be changed individually,
e.g., to circumvent color perception disabilities, if present.

4.2. Guidance Concept
One major advantage of our regression lens approach is that it
offers users the possibility to freely define an area of interest for
the regression analysis. Mouse interactions for moving and resizing
the lens selection facilitates an exploratory analysis procedure and
creates the desired lens effect with real-time feedback of regression
models. Thus, users will be able to exclude specific data points, such
as clusters or points which belong to a particular class, which may
have negative influence on the statistical computation. However,
finding a good selection area for the lens can be a challenging task,
given the many possible positions and sizes of a regression lens.

During the development of our regression lens approach, we
demonstrated its functionality to a smaller number of members of
our research group, and invited them to informally test the system
and specifically, comment on the interactivity of the lens operation.
During these tests, we observed that often after a lens position was
found, the researchers applied small local repositioning of the lens,
to see if the chosen model would change noticeably or not. This
observation inspired us to include an automatic search step that
mimics this user behavior, with the goal of improving the local
regression model by small changes and offloading the user from
fine-grained selection tasks. Specifically, after a lens is dropped by
the user, we apply tentative horizontal and vertical translations of
5% of plot width and height, respectively, and test if the regression
quality is improving as measured via the in-sample error e( f ) for
any of these translations. Note that the selection of 5% is a parameter
set heuristically and can be easily adapted to user requirements. We
visually indicate the potential for improvement in model precision,
thus guiding the user through the space of local regression models.
To inform the user about improving directions, we provide a visual
hint in terms of an arrow that points to the most significant direction
of improvement (if given). This procedure optionally applies after
each interactive adjustment of the lens, and thus creates an iterative
feedback loop that helps users to find better fitting models.

Furthermore, we include an outlier detection to our guidance
approach for indicating the points that may negatively influence
the model computation. The used outlier detection is a distance-
based approach that considers for each point selected by the given
lens, the sum of the distances from its k-nearest neighbors as outlier
score [AP02]. Points are detected as outliers if their outlier score
is larger than three times the average distance of all points to its
k-nearest neighbors. For a fast and smooth computation, we auto-
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Figure 7: Our prototype is separated into four views: (a) visualizes multivariate data by means of a SPLOM; (b) is the interactive analysis area
for the investigation of local regression models for a chosen cell from the SPLOM; (c) is a settings window to control regression computation;
(d) shows additional information like selected points, regression coefficients and correlation measure for the current selection to be investigated.

matically set k by using the heuristic
√ n

2 with n being the number
of selected points.

A demonstration of this guidance concept is depicted in Fig-
ure 7(b) – activated lens in the middle. In this case, the guidance
concept suggests to move the lens in right direction to improve the
current e( f ) value of the linear regression model fx(y) (colored in
red) from e( f ) = 0.031 to e( f ) = 0.021. If we take a closer look at
the current selection, one can see that this selection involves an out-
lier (indicated as red cross) that impairs the linear regression in this
example. By moving the lens to the right, this outlier gets excluded
from the selection, resulting in the above mentioned improvement.

4.3. Implementation Details
We implemented the user interface of the regression lens in Java,
and integrated an R-Environment for the statistical computations.
To render scatter plots, the JFreeChart library is used. To provide a
smooth exploration, we implemented our system using two threads,
which separate foreground and background computations. The fore-
ground thread handles user interactions and display updates. The
background thread translates screen coordinates to plot coordinates,
calls R to compute the candidate regressions and other needed infor-
mation. For computing the regression models, we used the standard
linear models function lm() in R.

5. Case Study
Next, we demonstrate the usability of our approach and evaluate the
different regression issues by using well-known data sets from the
UCI Machine Learning Repository [Lic13].

Global vs. Local Analysis: One primary goal is to enable an in-
teractive exploration for local regression models in scatter plot
data. Figure 8 exemplifies this intention with the help of the Iris
data set and shows an interactive outcome compared to a general
global regression analysis. The first figure on the left (Figure 8a)
shows the distribution of petal length against sepal length, and
highlights the different iris species (setosa in green, versicolor in
orange and virginica in purple). The plot shows clear separated
patterns of the different classes. However, if we apply the regres-
sion lens over the whole data (Figure 8b), it returns a cubic model
fy(x) = 0.185x3 + 0.653x2 + 0.024x+ 0.197 as best fitting model
(cf. Section 3.3). By interactively positioning three local regression
lenses for the different classes (Figure 8c), one can see that none of
the three models has a similar trend compared to the global one. In
fact, the main directions of the models have changed to the direction
fx(y) and describe different models for the three classes.

Underfitting vs. Overfitting: Next, we consider the underfit-
ting/overfitting issue with respect to our regression lens concept.
Figure 9 demonstrates the effect of including and excluding cross-
validation for the regression computation. In the background, the
actual lens selection is shown, which at first glance seems to capture
only little data. Actually, the selection contains 49 data points which
are mostly overdrawn due to their similarity. The data point framed
in red actually contains 30 overdrawn points and highly influences
the regression model computation. This is the reason why the lens
tries to match this point in a very precise manner in the previous
example (Overfitting). By activating cross-validation, we decrease
the weighting of this single area and receive a quadratic model,
which seems to be more suitable for this selection.
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(a) Iris data set – petal length/sepal length. (b) Global regression analysis. (c) Local regression analysis.

Figure 8: Comparison between global and local regression analysis with the Iris data set. (a) Shows a scatter plot that visualizes petal length as
independent variable (x) and petal length as dependent variable (y). The color coding denotes the different class labels of the data (species). (b)
By applying a usual global regression analysis, we obtain a cubic function as best fitting model according to the test data subset (colored in
dark blue). (c) Shows the result of local regression analysis for the different flower species setosa, versicolor and virginica.

Figure 9: Overplotting issue – Bosting Housing data set: By using
the raw selected data points our regression lens returns a polynomial
model of degree 4 as best fitted model (Overfitting). However, if we
include the out-of-sample error into the regression determination, it
changes the model to a quadratic model (Good fit).

Independent vs. Dependent Variable: Since our approach pro-
vides two different directions ( fy(x) and fx(y)) for each polynomial
model, the number of possible models increase. To reveal how im-
portant the choice of a direction is, the correlation measure corr(x,y)
as defined in Section 3.2 is used. Figure 10 depicts the information
content of the correlation measure. It shows the extreme examples
for each model by using the Auto MPG data set. On the left, we
compare a local area of the plot car weight against displacement,
which has a strong positive correlation. In this case, it is obvious
that it does not play a major role in which direction the user is
going to choose, since all models describe the positive trend very
well. Moreover, one can see that the corr(x,y) value stays stable
for each model and remains at around 0.81. On the other hand, if
the correlation is weak, the choice of direction may influence the
analysis process, or worse, lead to improper hypotheses.

Uniformity vs. Clumpiness: The last example covers the issue
of finding uniformly distributed selections for the lens. To judge

Figure 10: Independent vs. Dependent Variable – Auto MPG data
set: Impact of correlation measure demonstrated on extreme exam-
ples for each polynomial model. Good correlation here means that
the choice of direction is unimportant, whereas a bad correlation
indicates that the models show to be very different.

a selection, the user can compare the quality by the distribution
measure h( f ) and the shown normalized histograms on the variable
axes of the regression lens. Figure 11 exemplifies this functionality
on the Wine data set. In the background, we show a bad selection
example of two different wine clusters (class 1 and class 3). This is
indicated by the relatively high h( f ) value of 0.65 and the unequal
distributed histograms on the variable axes (i.e., two peaks on the
x and y axis). To improve the selection, the user can gradually
downsize the selection box and compare visual and computational
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improvements on the histograms and h( f ) value. Gaps along the
histogram axes are good split indicators. If we split the two clusters
(red and blue selection), one can see an improvement in the results.
The red selection examples show an iterative improvement of the
h( f ) value by minimizing the height of the box. In the end, we
improve over the initial single selection (total distribution measure
h( f ) = 0.65) to a two-fold sub-selection (with h( f ) = 0.45 and
h( f ) = 0.44 distribution values).

Figure 11: Uniformity issue – Wine data set: Lens selections can
be verified by comparing the axes histograms (visually) or by the
h( f ) measure (analytically). In the background a bad selection with
a relatively high h value is shown, which can be improved by using
two separated lenses for the two clusters (cutouts on the right).

6. Discussion and Extension Possibilities
Our regression lens concept allows to define and compare models
of user-selectable locality. Local modeling involves the segmenta-
tion of data which is typically a hard problem to do automatically,
since often parameter settings are required that do not fit for all
data or user interests. Our lens approach allows to easily factor in
user background knowledge. Compared to fully-automatic analy-
sis approaches, our lens technique provides the degree of freedom
for exploring local patterns in classified or unclassified data. It can
complement automatic approaches of searching for local regression
models, which typically require information about clusters or class
labels, or need to specify an automatic data segmentation step.

We use a set of plausible statistical scores to select regression
models. A possible extension is to include additional scores or
domain-dependent quality measures. For example, one could use
Scagnostics features [WAG05] for quantification of patterns. Fea-
tures like clumpiness or monotonicity can be integrated for validat-
ing user selection, and thus help to identify good local selections.

Another important aspect to be considered is the scalability of
our approach with respect to the number of selected data items.
Therefore, we empirically evaluated the performance regarding dif-
ferent models and data samples. The evaluation was performed on a
notebook with an Intel i7-6500U CPU and 16 GB RAM, the results
are shown in Table 1. The tested sample size includes 100, 1.000
and 10.000 data points. We observe that the response time increases
by taking models of higher degrees and, of course, by increasing the
data size. Since the automatic lens selection computes all models

to find the best fitting model, its response time is accordingly the
longest. Our implementation can process lens selections up to 1.000
data items for a pre-selected model at response times in the range of
100-200 milliseconds, which can be considered fully interactive. For
larger data size and automatic model selection, we observe response
times between 0.7 and 22 seconds. A speedup may be achieved by
data sampling or increasing implementation efficiency.

100 1000 10000
Linear 43ms 104ms 1941ms
Quadratic 30ms 152ms 4189ms
Cubic 31ms 220ms 7287ms
Degree 4 44ms 294ms 10589ms
Automatic 83ms 738ms 22193ms

Table 1: Computation time for the regression models.

A recurring problem in data analysis is the issue of dealing with
outliers, a well-known problem in practice. Approaches exist to
detect and handle outliers in data analysis. We provide a guid-
ance approach including a simple outlier detection to indicate se-
lected points that may negatively influence the model computation.
More advanced or domain-specific outlier detection methods can be
thought of. Our guidance uses a translation model with a predefined
shift size to suggest local repositioning of the lens. More advanced
guidance may involve more exhaustive search over the translation,
or other transformations of the lens selection like rotation.

It will also be interesting to devise methods for higher-
dimensional regression. To this end, definition of variable and data
selection is expected to become more difficult. A first idea is to de-
fine a process by which the user incrementally adds more variables.
Then, we note our approach shows a smaller number of models
in-place in the lens. We may also think about using comparative vi-
sualization to compare more models against each other. Finally, we
note that modeling with the regression lens is an interactive process.
It may be useful to record the interaction operations or intermediate
models considered by the user. This sequence of operations or mod-
els could be shown using provenance techniques, to make plausible
how a particular choice of models was obtained by an analyst.

7. Conclusion
We introduced regression lens, a visual-interactive approach for the
exploration of global and local regression models in scatter plot
data. This approach allows users to interactively select a portion
of data on which the regression computation is run. It provides
statistical measures and visual feedback features to judge the quality
of a given selection as well as the output model. We introduced a
guidance concept that supports the interactive process of finding
well distributed selections based on the in-sample error of slight
translations. Furthermore, we pointed out and evaluated important
analysis issues for our regression lens concept, and demonstrated
the applicability and benefits of our approach with use cases on
example data sets. We also discussed several extension possibilities.
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