
Understanding a sequence of sequences:
Visual exploration of categorical states in lake sediment cores
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Fig. 1. The main analytical task is to determine which categorical sequences in the time series are similar. To this end, geoscientists
assess semantic and temporal similarity. The “semantics” of a categorical sequence denote the geoscientific meaning, which is
interpreted based on domain knowledge. The temporal similarity is assessed from the time periods in which the sequences appear.

Abstract—This design study focuses on the analysis of a time sequence of categorical sequences. Such data is relevant for the
geoscientific research field of landscape and climate development. It results from microscopic analysis of lake sediment cores. The goal
is to gain hypotheses about landscape evolution and climate conditions in the past. To this end, geoscientists identify which categorical
sequences are similar in the sense that they indicate similar conditions. Categorical sequences are similar if they have similar meaning
(semantic similarity) and appear in similar time periods (temporal similarity). For data sets with many different categorical sequences,
the task to identify similar sequences becomes a challenge. Our contribution is a tailored visual analysis concept that effectively
supports the analytical process. Our visual interface comprises coupled visualizations of semantics and temporal context for the
exploration and assessment of the similarity of categorical sequences. Integrated automatic methods reduce the analytical effort
substantially. They (1) extract unique sequences in the data and (2) rank sequences by a similarity measure during the search for
similar sequences. We evaluated our concept by demonstrations of our prototype to a larger audience and hands-on analysis sessions
for two different lakes. According to geoscientists, our approach fills an important methodological gap in the application domain.

Index Terms—Visualization in Earth Science, Time Series Data, Categorical Data, Design Study.

1 INTRODUCTION

Understanding landscape development, the function of ecosystems, and
the responses to climate change is of fundamental interest to geosci-
entists. The investigation of developments in the past is valuable to
assess today’s and future’s climate dynamics and their effect on land-
scape evolution. Geoarchives are valuable sources in this regard, as
they chronologically capture responses of the ecosystem to climate and
environmental conditions. The responses result from an interplay of
multiple local and global driving factors including not only climate, but
also local geology and geochemistry, vegetation, animals and human
impact. Deducing the conditions from the responses requires domain
knowledge. To identify and disentangle the factors, multiple types of
geoarchives from numerous locations are investigated. Furthermore, hy-
potheses gathered from one study are tested in others. Each geoarchive
is therefore one piece that contributes to the overall picture.

In this work, we focus on the analysis of one important type of
geoarchives: sediment cores which are recovered from the ground of
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lakes. Microscopic analysis leads to so-called “microfacies data”, a
time sequence of categorical sequences. One categorical sequence
comprises the sediment layers in one year. The geoscientific goal is
to gain hypotheses from this data about the climate and environmental
conditions that appeared in the past and about their temporal extent.
Geoscientists approach this goal by identifying groups of categorical
sequences that indicate the same conditions. To this end, the geosci-
entist assesses the semantics and the temporal similarity of sequences.
Sequences are semantically similar if they have similar geoscientific
meaning. They are temporally similar if they appear in similar time
periods. An example is shown in Fig. 1. Assessing the similarity of
categorical sequences becomes a challenge when the data set comprises
hundreds of unique sequences and shows high temporal volatility.

Our main contribution is a tailored visual analysis concept that sup-
ports the investigation of microfacies data. Visual methods support the
simultaneous assessment of the semantics and the temporal context of
categorical sequences. Computational methods substantially facilitate
the identification of similar categorical sequences in the data. They
automatically identify unique sequences and provide a ranking during
the search for similar categorical sequences. Interactive means support
the generation and adjustment of groups effectively. Our concise visual
interface allows the user keeping track of the analytical progress.

This design study was conducted in close collaboration between re-
searchers from visualization and geoscience. An expert for microfacies
analysis co-authored the paper. She accompanied the scientific process,
which comprised gaining an initial understanding of the geoscientific
question (Sec. 2) and the analytical procedure with the main tasks (Sec.
3), the conceptual development (Sec. 5) and its realization with specific



Fig. 2. Microscopic analysis of a sediment core. The sediment core (on the left) comprises layered sediments over thousands of years. Magnification
under the microscope provides the necessary detail to record qualitative measurements. The yellow lines indicate the boundary between different
layers, whose qualitative characterizations are depicted in the table. A categorical sequence subsumes the sediment layers that correspond to one
year. The result is a time sequence of categorical sequences. Years b.p. denote years before present (the reference for present is 1950).

methods (Sec. 6 and 7). In addition, five microfacies experts confirmed
that the analytical goals are relevant for their work and that they apply
the same analytical procedure. The resulting prototype was evaluated
(Sec. 8) in use cases by two microfacies experts, one of them being
the co-author. Further feedback was gathered from a demonstration
of the prototype to eight researchers from a leading group in climate
and landscape development. Our prototype was ascribed as the first
systematic method for the analysis of microfacies data, which fills an
important methodological gap in the application domain.

2 GEOSCIENTIFIC BACKGROUND

2.1 Microfacies analysis of sediment cores
Lakes are highly sensitive to changes of climate and environmental
conditions. Annually laminated lake sediments reveal unprecedented
details, as the conditions are reflected in seasonal layers [7, 9, 28]. Mi-
croscopy of the seasonal layers (microfacies analysis) is one approach
that is employed to extract information about past climate and envi-
ronmental conditions [6]. During microscopic analysis, geoscientists
describe the characteristics of the individual layers [5]. Usually, multi-
ple layers deposit during a year. They reflect the annual cycle of the
lake’s ecosystem with its variations, e.g., in water circulation, plant
growth, or temperature. Based on these annual cycles, the geoscientist
subsumes seasonal layers into intervals that correspond to one year.
Note that more than one layer can be deposited during a season, or that
a specific season may not be represented by a layer, as no sediment was
deposited in the season (i.e., in winter). The dating of years is derived
by counting the annual cycles backwards from present.

2.2 Microfacies data
The result of microscopic analyses is a time sequence of categorical
sequences (see Fig. 2). The overall time sequence comprises thousands
of years. Each year is described by a categorical time sequence. A
categorical sequence is formed by the sediment layers in one year. Each
sediment layer represents a single categorical state. The states within a
categorical sequence do not have an absolute time stamp. Solely their
relative temporal order is known.

2.3 Analytical goals: conditions, responses, and temporal
extent

Geoscientists aim at deducing hypotheses about developments of land-
scape and climate from microfacies data. They investigate two main
questions:

• Which climate and environmental conditions appeared in the past
and what was the response of the landscape?

• When did the climate and environmental conditions appear? What
was their temporal extent?

Fig. 3 illustrates the goal. On top, the available data is shown: the
time sequence of categorical sequences. Below, we see the result that
geoscientists are looking for: Climate and environmental conditions (A,
B, C, D in the example) and their temporal extent (time periods T1 to

Fig. 3. Analytical goal: The time sequence of categorical sequences (on
top) is analyzed to identify the climate and environmental conditions in
the past (A, B, C, D) and their temporal extent (time periods T1 to T6).

T6) are deduced. Note that the temporal extents of conditions strongly
vary, even if the same condition reoccurs in different time periods.

3 ANALYTICAL PROCEDURE AND CHALLENGES

3.1 Analytical Procedure: Find groups of related se-
quences

Geoscientists apply the following approach to gain hypotheses about
climate and environmental conditions in the past and their temporal
extent: They derive groups of categorical sequences that represent re-
sponses to the same conditions. The categorical sequences within a
group provide indications about the climate and environmental con-
ditions and the responses of the landscape. The temporal extent of
conditions is given from the occurrences of the group over time. To
find meaningful groups, it is necessary to determine which categorical
sequences are responses to similar conditions and which are responses
to different conditions. Therefore, the analyst applies three steps which
we describe in the following.

3.1.1 Identify unique categorical sequences

Commonly, multiple time points exhibit the same categorical sequences.
Same categorical sequences point to the same climate and environmen-
tal conditions. To gain an overview which categorical sequences appear
in the data, the set of unique sequences is identified. Further, the
temporal occurrences of each unique sequence are inspected to under-
stand which time points indicate the same climate and environmental
conditions.

3.1.2 Group similar unique sequences

The same climate and environmental conditions can cause different
responses. This results in different categorical sequences that repre-
sent the same conditions. In consequence, the unique sequences are
explored to identify which sequences indicate the same climate and
environmental conditions. Unique sequences are considered as indica-
tions for the same conditions if they have similar semantics and similar
temporal context. We explain both in the following.



Semantic similarity. The term “semantics” refers to the meaning
of a categorical sequence. Understanding the meaning of a categorical
sequence requires domain knowledge. In our geoscientific application,
a categorical sequence is an indicator for certain climate and envi-
ronmental conditions and the responses of the landscape. Categorial
sequences are semantically similar if they indicate the same conditions
and responses. In Fig. 1 and Fig. 4, we present examples for semantic
similarities and differences. The examples show that it is not sufficient
to compare the sequences of states. All categorical sequences show
strong similarities. But the analyst considers some of them as similar
and some of them as different, based on domain knowledge. Also, it is
common that categorical sequences appear in the data whose meaning
is not yet fully understood.

Temporal similarity. Climate and environmental conditions ap-
pear in delimitable time periods. In consequence, categorical sequences
that indicate the same conditions also occur in delimitable time peri-
ods. Categorical sequences are temporally similar if they appear in the
same time periods. Hence, the analyst investigates the temporal occur-
rences of categorical sequences. Fig. 1 and Fig. 4 provide examples of
temporal similarities and differences among categorical sequences.

Fig. 4. Assessment of the semantic and temporal similarity for two pairs
of categorical sequences. The similarity assessment leads to ambiguous
findings: The sequences DOM and DO have different semantic meaning.
The M layer is an indicator for high circulation, while the absence of
that layer in DO indicates low circulation. But they appear in similar
time periods. The second pair of sequences, DOM and MOM, have
similar semantics, but they are not temporally similar. The geoscientist
concludes that neither DO nor MOM are similar to DOM.

The examples in Fig. 4 show that it is important to concurrently
assess semantic and temporal similarity of categorical sequences, as
both can lead to different results.

3.1.3 Inspect groups of related sequences
During analysis, the data set is transformed from a time sequence of
categorical sequences into groups of unique sequences. Geoscientists
inspect these groups and their temporal occurrences to derive hypothe-
ses about landscape and climate conditions in the past.

3.2 Analytical challenges
At the heart of the analytical procedure, the meaning of differences
among unique sequences is assessed as a prerequisite to find meaningful
groups of related sequences. This is carried out by comparisons of
semantics and temporal context of unique sequences. Both types of
comparisons rely on human assessment. Interpreting the meaning of
categorical sequences involves domain knowledge. Determining the
temporal similarity of unique sequences also uses human assessment,
as criteria to determine temporal similarity are not known a-priori.
Conducting these comparisons becomes a challenge if the data set
comprises many unique sequences and is strongly volatile over time.
The exemplary data set which we investigate in Sec. 8.1.1 comprises
around 600 unique sequences over more than 6,000 years.

The main goal of our work is to provide methods that systemati-
cally support this analytical procedure. We specifically focus on the

challenges that come with many unique sequences and high temporal
volatility.

3.3 Available Methods for Microfacies Data
So far, our domain experts have interpreted sediment core data individ-
ually and manually, based on a visual inspection of the data. During
microscopy process, they develop hypotheses about temporal devel-
opments and typical characteristics of states and sequences. These
hypotheses are examined with statistical tests and graphical data plots.
Available methods to identify temporal evolution do not consider the
volatility of sequences of states as a criterion. Inspections of categorical
sequences focus on short time ranges, which is plausible as investiga-
tions are time consuming. The temporal course of categorical sequences
in data sets with many different sequences is rarely investigated due
to a lack of methods that support this task. Our collaboration partners
are aware of this aspect and asked for novel analytical approaches that
support an investigation of categorical sequences across thousands of
time points and speed up the process. Hence, our approach is tailored
to enable a systematic analysis of the data on a high-quality level via
an interactive visual analytics framework and in acceptable time.

4 RELATED WORK

Due to the interdisciplinary nature of our application issue, related work
brushes various areas. We discuss relevant mining approaches as well
as visual data analysis of temporal data and sequences.

4.1 Mining Techniques
The basic conditions in order to consider state-of-the-art mining tech-
niques are – in terms of our scenarios – two-fold: (i) the similarity of
sequences and (ii) the relation of sequences in time. Finding sequences
of interest in time is related to time-dependent distribution properties of
sequences. Regarding this, mining algorithms consider data as single
sequences of categorical states. The aim is to detect potentially inter-
esting motifs, which are subsets of the categorical states. Similarity
trees [32] could support to find relevant patterns, but lack to involve the
expert’s domain knowledge, while correlation based approaches [45]
lack to integrate the time aspect appropriately. Pixel-based bar chart
techniques [22] seem to be a good starting point to aggregate data. Our
approach goes in a similar direction. Nevertheless, the detection of
motifs is based on pre-defined assumptions. In that regard, a number
of mining algorithms detect specific patterns, e.g., such as periodic
patterns [11, 44] or surprising patterns [1] (= outliers). The challenge
with automated algorithms is that our users do not know in advance
what constitutes an interesting pattern.

Closely related to our work, a popular approach is to group similar
elements to clusters [1, 15, 34, 35, 46]. For doing so, relevant geometric,
geodesic, or stochastic distance measures need to be defined in the first
place, as criteria to group elements together. Since categorical data
cannot be considered to be embedded within an Euclidean space, this
task is a challenge. In high-dimensional spaces, the contrast for clusters
vanishes [4,18], rising questions to cluster reliability. Further, similarity
among categorical sequences in our application is not fully explained
by the similarity of categorical states (which can be captured by formal
similarity measures), but emerges from interpretation of sequences
based on domain knowledge.

4.2 Visual Analysis of Sequence Data
Time sequence analysis is a major interest of the visualization com-
munity. Numerous methods have been presented to handle temporal
data (overviews in [2,37]). Often, numerical data is in the focus, whose
analysis demands other operations and visualization methods than the
categorical sequences in our application domain. Still, several works on
numerical time sequence data inspired our research. Multi-resolution
techniques [16] employ the concept of arranging time in more than one
spatial dimension, which is adapted in our visual design. The Time-
Classifier [41] supports the identification of relevant patterns in long
time series with semi-automatic approaches and user-driven grouping.
Our strategy is similar, but our time sequence of categorical sequences



Fig. 5. Visualization for Step 1: Identify unique sequences and their temporal occurrences. The semantic view (right) shows the unique sequences
sorted by frequency from top to bottom (most frequent on top). Each row depicts a unique sequence. Each unique categorical sequence is shown
as a series of colored blocks from left to right. A block’s color indicates the state. Frequency is explicitly visualized in small bar charts left to the
sequences. The temporal view (left) shows a highly compact representation of the complete time sequence of categorical sequences. The time
sequence is split into multiple columns, which are aligned side by side. In a single column, time is mapped from top to bottom. Each row shows the
categorical sequence at one time point by diminished visual primitives compared to the semantics view. Small time frames can be shown in detail on
the user’s demand (the time subsequence within the black frame is magnified in the detail view on top). Both views are coordinated with a brushing
and linking mechanism: The semantic view highlights a selected unique sequence of interest and the temporal view the corresponding time points.

requires a different assessment of similarities. Further, interaction
techniques for time sequences [20, 40] are relevant for our work.

Over the last years, visualization research addressed categorical
data. Categorical sequences consist of events or states. Their elements
may be associated with time stamps, turning the categorical sequence
into a time series. An early contribution was Life Lines [33], which
solely focused on a single record. Finding similar temporal categorical
records was proposed in [43]. In LifeFlow [42] and EventFlow [30],
events within sequences are visually grouped to reveal similarities
and differences in sequences and to enable sequence simplification
strategies. More general, strategies to handle high volume and variance
in categorical time sequences are presented in [10]. All these methods
dominantly work on sets of categorical time sequences. Note that our
times series have a different interpretation: we have a time stamp per
categorical sequence, but not for the elements within. Hence, these
methods are not applicable to our problem, as the temporal relation
among categorical sequences is a crucial part of microfacies analysis.

In addition, there are techniques dealing with categorical data in
different application domains. They inspired and influenced our work.
To mention a few: In the domain of human geography, Vrotsou et
al. [39] tracks similarly behaving records based on user-input. Albers
et al. [3] address genomic alignment data, while Coco [27] is designed
to compare two disjoint sets of records. Again, the focus lies on
analyzing a set of categorical sequences rather than on understanding
temporal relations among them. Similar subsequences within one
long time sequence are studied in [38]. An alternative to showing
categorical sequences explicitly could be low-dimensional embeddings
[19,21,23,24], but a semantic equivalent map from our categorical data
to numerical data does not exist.

To conclude, traditional approaches do not allow an exhaustive
analysis of sediment data. Regarding this, our domain experts have a
strong expertise in geoscience, while we are experts in (visual) data
analysis. Thus, the main task is to combine the expertise of the different
disciplines and facilitate an interactive visual access to the data for our
experts. In fact, there is a need for a visual analytics approach to

analyze sediment data, which motivates to fill this gap in the literature.

5 VISUAL ANALYSIS CONCEPT

In this section, we introduce our visual analysis concept to support
the analytical procedure introduced in Sec. 3. We show the interplay
of visual, interactive, and computational methods for each step. Our
visual design is explained in more detail in Sec. 7.

5.1 Identify unique categorical sequences
The initial step of the analytical procedure is to identify unique categor-
ical sequences throughout the time sequence. We apply computational
methods to extract the unique sequences in the data set and link them
to time points. Our visualization (Fig. 5) comprises an overview on
the semantics and an overview on temporal developments. The seman-
tic overview displays all unique sequences and their frequency. The
time overview shows the time sequence of categorical sequences in a
highly compact fashion and provides details on demand. Both views
are coordinated with a brushing and linking concept that supports the
inspection of single unique sequences.

5.2 Group similar unique sequences
The core of our analytical procedure is to group similar unique se-
quences. To this end, the user needs to identify which unique sequences
are similar in semantics and time and to construct groups. We facilitate
the identification of similar unique sequences by providing a ranking.
It is based on a computational similarity measure, which we explain
further in Sec. 6. The measure compares the sets of states and the order
of states in different categorical sequences. The ranking unburdens the
user from the laborious task to identify categorical sequences that are
composed of similar sets of states in similar order. Instead, the user can
focus on the interpretation and comparison of the semantic meaning.

Our procedure to identify groups of related sequences is iterative.
Each iteration results in a novel group of related sequences. At the
beginning of each iteration, a unique sequence of interest is identified



from an initial inspection of the semantic and temporal overview pro-
vided in step 1 (Fig. 5). A novel group is constructed that initially
comprises the unique sequence of interest as a reference sequence. The
remaining unique sequences are automatically ranked by the computed
similarity of the categorical sequences. When the user lowers the simi-
larity threshold, sequences are automatically added to the group. The
similarity threshold is decreased as far as the geoscientist considers the
sequences in the group as semantically and temporally similar. This
assessment is supported by visual means. Our visualization (Fig. 6)
comprises a histogram over time to show the temporal distribution
of the group and a depiction of the unique sequences in the group.
A brushing and linking concept applied to both views supports the
inspection of specific unique sequences.

The computational similarity that is used to rank the unique se-
quences serves as an indicator for semantic similarity, but the geoscien-
tist eventually assesses which unique sequences are semantically and
temporally similar. Hence, the geoscientist can manually adapt the
group to remove individual categorical sequences that are not similar
to the reference sequence.

Fig. 6. Step 2: The temporary group of unique sequences is shown by
its temporal context and its semantics. The histogram on the left shows
the temporal distribution of the sequences in the group. The semantics
are depicted by the list of unique sequences on the right. The unique
sequences are ranked by their computational similarity to the reference
sequence. The small bar charts visualize the computed similarity value,
the vertical line depicts the current similarity threshold. Yellow bars in
both views highlight the unique sequence of interest.

5.3 Inspect groups of related sequences
During the analytical procedure, the data set is transformed from a time
sequence of categorical sequences into groups of categorical sequences.
The groups are characterized by unique sequences and their temporal
distribution. We visualize the temporal context by individual histograms
for each group. The semantics are shown by visualizations of the set of
unique sequences for each group, as shown in Fig. 7.

6 COMPUTATION OF THE SIMILARITY MEASURE FOR CATE-
GORICAL SEQUENCES

To support the central challenge of identifying similar unique sequences,
our visual analysis concepts employs a similarity measure to rank
unique sequences according to a sequence of interest. The usefulness
of the ranking depends on the quality of the similarity measure. In the
following, we discuss an exemplary set of similarity measures and their
suitability for our application.

In general, our categorical sequences show variations in length. They
comprise a low number of states, but the variability of state sequences
is potentially high. Gabadinho et al. [13] investigate common similarity
measures for categorical sequences. One important type of measures
counts the number of matching attributes between two sequences. They
do not directly exploit the sequences of states for determining similarity.
An example is the longest common subsequence. In our application,
with short and highly variable sequences, this measure is not suitable.

Fig. 7. Step 3: All groups of categorical sequences are explored by the
two facets semantics and temporal context. For each group, a histogram
depicts the temporal distribution (on the left). The semantics are shown
by lists of unique sequences for each group (on the right). Both views
are linked by a consistent qualitative color scheme for the groups and by
a brushing and linking mechanism to inspect unique sequences.

It ignores parts of the sequences and thereby overlooks similarities. An-
other important group of measures quantifies the cost of transforming
sequences into each other. A common standard is the Levenshtein or
edit distance [26]. It counts the minimum number of insertions, dele-
tions, and substitutions that are necessary to transform two sequences
into each other.

An alternative approach is to compare feature sets that describe the
categorical sequences. We adapted a useful set of features from compu-
tational linguistics. Here, sequences of text are often described by the
set of subsequences (also denoted as n-grams, with n as the length of
the subsequence). As an example, the sequence DOM comprises the
subsequences D, O, M, DO, OM and DOM. To handle subsequences
that occur repeatedly within one categorical sequence, we consider
them as separate features in the feature set Ω. The feature set con-
tains redundancies, as shorter subsequences are contained in longer
subsequences. But as we do not know in advance which subsequences
are important, we treat them all equally. Highly variable data sets
show a high number of subsequences in total, but only a sparse set of
subsequences occurs in each categorical sequence.

To compare sparse feature sets, the Jaccard-Index [25] is a suitable
and established measure. It determines the similarity of the sets Ω1 and
Ω2 by dividing the size of the intersection by the size of the union.

J(Ω1,Ω2) =
|Ω1∩Ω2|
|Ω1∪Ω2|

=
|Ω1∩Ω2|

|Ω1|+ |Ω2|− |Ω1∩Ω2|
(1)

The Jaccard-Index computes the fraction of subsequences that are
shared by both sequences. The computed similarity values range from
J = 1 for identical sequences and a value of J = 0 for sequences that
do not share subsequences. Both the set of states and the sequence of
states matter. Sequences that comprise the same set of states in different



order still exhibit some similarity.
To identify a suitable similarity measure, we implemented two exem-

plary measures: the Levenshtein distance and the Jaccard-Index applied
to sets of subsequences as described. We presented the resulting rank-
ings of categorical sequences to the domain expert, who clearly favored
the rankings based on the Jaccard-Index. Compared to Levenshtein, it
showed a better correspondence to the analysts’s notion of similarity in
state composition and order.

7 VISUAL INTERFACE

Our visual interface is composed of two closely linked visualization
components: one component for semantics and one component for
temporal context. This composition of the visual interface is consistent
throughout the analytical procedure. In the following, we discuss the
visual design of each component and indicate necessary adaptations to
varying requirements during analysis.

7.1 Visualization Component 1: Visualization of seman-
tics

The component bundles visual representations of the data semantics. To
assess the semantics, the user inspects and compares unique categorical
sequences. Hence, we need to visually represent multiple sequences
of categorical states simultaneously. The user should be able to easily
identify states within one sequence, to confine different sequences and
compare them to each other.

To account for these requirements, we apply a two-dimensional
spatial layout as the basic design. One spatial dimension serves to show
the states within individual categorical sequences. The second spatial
dimension is used to arrange multiple categorical sequences. In our
layout, shown in Fig. 8, each row represents one sequence. Multiple
sequences are arranged from top to bottom and aligned to the left. With
this layout, the user can easily identify individual state sequences (in
horizontal direction) and differentiate between multiple sequences as
well as compare them (in vertical direction).

Fig. 8. Basic visualization of categorical sequences. A sequence of
states is shown by a sequence of colored blocks with uniform size, from
left to right. A block’s color represents the categorical state. Multiple
sequences are arranged vertically.

Expressive and commonly used visual variables for categorical data
are color and shape. For both variables, the number of discernible
categories is limited. While combining both variables could yield to a
higher number of unique visual primitives, it comes with the cost that
the user’s efforts for visual inspection are substantially increased [17].
Hence, we use only one visual variable to discern categories, which is
color. The qualitative color scheme is adapted from Color Brewer [8].
In our exemplary data sets, the number of categories is rather small and
the number of distinctive colors in the color scale sufficient. If more
colors are required, we automatically complement the color scale by
samples from the CIELAB color space and offer the possibility to adapt
colors interactively. In addition to color, categories are made explicit
by labels.

We do not use shape to discern states. Instead, all states are mapped
to blocks. Blocks indicate the immanent temporal extent of states (in
contrast to events). The size of the blocks are uniform, as our data does
not deliver sufficient information to explicitly visualize the duration of

a state. Aiming for an expressive visualization of state sequences, we
avoid visual cues about the duration of states. All states are therefore
depicted as uniformly sized blocks. In the result, the visualized length
of a sequence corresponds to the number of states in the sequence, no
to its time frame (which is known to be one year for all sequences).
We also utilize the blocks to group sequences visually in our two-
dimensional layout. The blocks’ widths are larger than their heights
and the margins are larger vertically than horizontally. Thereby, states
within one sequence are grouped while different categorical sequences
are confined.

We adapt our general visual design to the different sets of unique
categorical sequences that appear during the analytical procedure. It
results in two views.

View on unique sequences The overview on the semantics
shows the automatically extracted unique sequences together with their
frequency (left part of Fig. 9). The list of unique sequences is sorted by
frequency, with the most frequent on top. Frequency is also explicitly
visualized by small bar charts left to the unique sequences. To cope
with hundreds of unique sequences, the scrolling mechanism supports
a subsequent exploration of the list of unique sequences.

View on groups of similar sequences The view shows the se-
mantics of all groups that have been generated by the user (right part
of Fig. 9). All groups are shown by their reference sequence and the
list of unique sequences, sorted by the similarity value. The groups are
shown below each other, with the most recent group on top. Duplicate
group memberships of unique sequences are visually emphasized by
color. The computed similarity of unique sequences to the reference
sequence plays an important role during the grouping of similar se-
quences. Hence, the computed similarity values are explicitly shown
in a bar chart left to the unique sequences. On top of the bar chart, a
vertical line depicts the current similarity threshold.

The two views show two complementary subsets of the data: The
first view visualizes all unique sequences that have not been assigned
to a group. Sequences that are assigned to a group are shown in the
second view. Together, the two views provide access to the complete
data set and convey the progress of the analytical procedure, as unique
sequences move from the first to the second view. We therefore show
both views concurrently beside each other.

As a side effect, the arrangement of views in the component does not
need to be adapted during the analytical procedure. This is beneficial
during the grouping of similar categorical sequences, which involves
repeated consultations of both views.

7.2 Visualization Component 2: Visualization of temporal
context

The component subsumes visualization methods that represent tem-
poral context. Our data comprises thousands of time points. That
order of magnitude hampers a concurrent in-depth visualization of all
time points on average screen resolutions. Useful strategies to derive
overviews over thousands of time points depend on the data that needs
to be shown.

Considering the groups of unique sequences, the main goal is to show
in which time periods the groups appear. The grouping step introduces
a novel qualitative variable: Each time point is associated to a group.
Temporal histograms are well-suited to show the temporal distribution
of groups. We show multiple groups by individual histograms rather
than one stacked histogram, even though individual histograms require
more screen space. Our main microfacies expert favored individual
histograms. They better support inspection and comparison of the tem-
poral distributions of groups as well as the grasping of changes in the
histogram during the adaptation of temporary groups. The histograms
are placed below each other to facilitate comparison of different groups.

The second data facet that is shown over time is the set of unique
sequences. Using histograms for a high number of unique sequences
would require the inspection of hundreds of histogram, which is not
feasible. To provide a comprehensive overview how unique sequences
are associated to time points, we depict the complete time sequence
of categorical sequences. An important design decision is the spatial



Fig. 9. Our visual interface is composed of two components: A time visualization component on the left and a semantics visualization component
on the right. The time visualization shows the temporal distribution of all groups of unique sequences in separate histograms. The component
also provides the time overview for the analytical step 1 that is shown in Fig. 5 on the left. The user can switch between both views on demand.
The semantics visualization component shows the frequency-sorted set of unique sequences that have not been assigned to a group (left side of
component). Beside, the sets of unique sequences that have been grouped are shown in separate lists. The bar chart shows the computational
similarity of each unique sequence to the unique sequence of interest (highlighted in yellow). The screenshot was derived during the analysis session
that we describe in Sec. 8.1.1. It depicts the process of generating a new group of categorical sequences from the reference sequence MO.

arrangement of the time sequence. E.g., time can be arranged linearly
along one spatial axis, or in pixel based or cyclic designs. Our basic
arrangement is adapted from the histogram: the time sequence is split
into multiple uniform intervals. The uniformly sized time segments
are arranged column-wise and the time sequence within an interval is
depicted from bottom to top (Fig. 10).

Fig. 10. Spatial arrangement of temporal dimension for the overview on
categorical sequences over time: the time sequence is split into intervals
that are arranged in columns.

This mapping allows to reuse the visual representation of categorical
sequences from the semantics visualization component, which also
shows categorical sequences in rows. Within a time interval, time is
oriented from bottom to top, which maps with the original orientation
of time in the sediment core. By using the same uniform temporal
intervals as in the histogram, the general spatial arrangement of time
is consistent in both visualizations. In the comprehensive overview,
visual representations of categorical sequences are strongly diminished.

To summarize, our component provides three different views.

Time Overview The time overview shows all categorical se-
quences over time in a highly compact layout, as shown in Fig. 5
on the left. The view scales to larger data sets (in the same order of
magnitude) or smaller screen sizes by providing horizontal scrolling.

Detail View The detail view magnifies a temporal subsequence of
categorical sequences (Fig. 5).

Histogram The histogram view (left view in Fig. 9) shows the
temporal distributions of groups of sequences.

The data shown in the time overview and in the histograms relates
to different stages of the analysis procedure. It is therefore sufficient
to show one view at a time and offer the user the flexibility to switch
between the two views. In addition, the on-demand detail view is shown
on top of the visual interface. The selected temporal subsequence is
communicated by a black frame in the time overview.

7.3 Visual linking and interaction
The two visualization components are linked via two interaction mecha-
nisms. The first mechanism supports the selection of a unique sequence
as part of the brushing and linking concept. The second mechanism
involves the definition of a new group of similar sequences.

The selection of a unique sequence is supported and propagated
in both visualization components. The realization in the semantic
visualization component is straight-forward, as unique sequences are
explicitly visualized. In the time visualization component, brushing a
time point initializes the selection of the associated unique sequence.
The second interaction mechanism supports the definition of a new
group of similar sequences. It comprises the generation, adaptation,
and storage of a group as well as the handling of duplicate group
memberships of unique sequences. Interactive means to derive a group
are integrated in the semantics visualization component (Fig. 9). The
induced changes are propagated to the other visualization component.



Both visualization components are visually linked. Categorical se-
quences are consistently mapped to sequences of colored blocks in
both components, using a persistent qualitative color scale. In addi-
tion, groups of similar sequences are visually linked by the use of a
second qualitative color scheme (light qualitative scheme from Color
Brewer [8]). One color from the scheme is applied to each group,
including the temporary group during the second analytical step. For
sequences that have not been assigned to a set of related sequences, the
color icon remains white. Further, the unique sequence of interest is
visually highlighted by an underlying colored frame (in yellow) in both
components.

8 RESULTS

8.1 Use cases
Our tool was evaluated by two experts on microfacies data analysis.
They used our tool to perform analyses on two data sets. The data sets
originate from two different lakes and exhibit different data characteris-
tics [9, 31].

8.1.1 Use case 1: Investigation of microfacies data with many
unique categorical sequences

Initially, our tool provides an overview of the data set (see Fig. 5). The
data set spans about 6,000 years. The lengths of categorical sequences
vary from 1 to 11 states. Five distinct states of sediment layers are
discerned in the data set: M,O,K,D and an unspecified state with un-
laminated sediment, which we denote as N. The data set comprises 612
unique sequences. The analyst starts her investigations by exploring
the most frequent unique sequences. She performs the same analysis
pattern repetitively: First, she selects the next most frequent unique
sequence and explores the temporal distribution. Then, she investi-
gates different temporary groups of unique sequences by adapting the
similarity threshold.

For the by far most frequent sequence N, she quickly identifies the
four unique sequences that also contain the state N and stores them
as a group (in turquoise color in Fig. 7). The analyst moves on in the
list of frequent unique sequences, to MO. By decreasing the similarity
threshold, it becomes apparent that additional sequences predominantly
occur in the same temporal periods. In conclusion, 10 categorical
sequences are subsumed at the threshold value of 0.33 (light purple in
Fig. 7). The next frequent sequence is DO. Also for this group, the
temporal periods in which sequences occur do not change for decreased
similarity thresholds. That is the basis for defining the group of unique
sequences for the reference sequence DO. It comprises 35 unique
sequences (light red in Fig. 7).

The temporal distribution of the red group derived from DO is an
interesting finding to the analyst (left side in Fig. 7). The sequences in
the group appear in two different time periods: from 6,000 to 5,000
before present and from 2,000 to 1,000 before present. From other
studies of landscape development and pollen analysis, the two tempo-
ral periods are known to be characterized by different environmental
conditions [9]. These differences are attributed to human influence in
the latter period. In consequence, different responses of the lake are
expected in the two time periods. But our analysis reveals a strong simi-
larity of the responses. This similarity is also confirmed by results from
geochemistry analysis of the lake sediment core. From the analysis,
geoscientists conclude that the processes in the lake are similar despite
differences in environmental conditions.

8.1.2 Use case 2: Investigation of microfacies data with little
variability in categorical sequences

The second data set spans a similar time span as the first data set (7,300
years). In contrast to the data set in the first use case, the sequences in
the second data set are uniform. All 7.300 show the same categorical
sequence CD. In this situation, the analyst makes use of an additional
feature of our tool: It supports the redefinition of states based on a
user-selected set of state attributes. The analyst discerns the two states
C and D by additional attributes. At first, the analyst builds states
by the additional attribute C−Category. C−Category subdivides
the state C into three different states C f/g, Cg/ f and C f . The data

then comprises four uniques sequences (Fig. 11). This allows a plain
approach to determine groups: Each unique sequence defines one group.
Consequently, four groups are defined.

Fig. 11. Analysis results in use case 2. The categorical states are derived
from a combination of two qualitative attributes. The time sequence
comprises four unique sequences. After defining one group for each
unique sequence, the temporal histogram shows three major transitions
points: (1) at 2,400, (2) at 4,000, and (3) at 6,400. They confirm findings
from other studies [14,29,36].

The inspection of the temporal context of the sequences (histograms
in Fig. 11 on the left) shows that all sequences are temporally dif-
ferent. Hence, the subdivision of the states by additional attributes
is meaningful. The temporal histograms show three major transition
points. These transition points are consistent with the finding from
other studies [14, 29, 36]. Next, the analyst defines the states from
the attributes D−Category and D−T hickness. The ordinal attribute
D−T hickness results from a conversion of the the numerical thickness
into three classes. The set of attributes leads to eight different states
and six unique sequences (Fig. 12). The inspection of the temporal
similarity of the unique sequences shows similarities among them. The
user manually groups the unique sequences that appear in similar time
periods. The resulting groups (Fig. 12) are dominantly differentiated
by D−T hickness (the red group, turquoise, and purple groups solely
differ in values of D−T hickness). Hence, D−T hickness is a meaning-
ful indicator of different environmental conditions. D−Category also
subdivides the set of unique sequence, but only for smaller values of
D−T hickness (orange group), which means it plays a less important
role for the differentiation of conditions than D−T hickness.

Three temporal transitions are apparent in the histograms which
were not known to appear in the data.

Subsequently, the analyst tests other combinations of attributes. They
lead to other states and categorical sequences. Their investigation
leads to the same transitions as shown in Fig. 12. According to the
analyst, the findings can be associated with the known history of climate,
biology, and human society.

8.2 Feedback
In the following, feedback from domain experts is stated. First, we
describe how we used the expert’s comments to evolve our concept
during the iterative design process. Several views and functionalities
were not accepted by the user. An example was an alternative view to
the histogram, which depicts the group labels for every year. It was not
considered as useful, because the temporal distribution of groups was
difficult to grasp. Further, the domain expert did not utilize interactive
means to adjust the ranking function by adapting the underlying feature
sets. It was preferred to adapt the groups of sequences directly by re-
moving individual sequences. Expert feedback also initiated a complete



Fig. 12. Analysis results in use case 2 for categorical states from a
second attribute combination. One group is defined for each of the six
unique sequences in the data set. The temporal histogram reveals novel
findings: (1) An abrupt change appears around 1,500 before present. (2)
A transition point at 2,000 before present. (3) Gradual changes occur in
the time period 4,700 to 5,300 before present.

revision of our visual interface. Initially, we provided dedicated visual
interfaces for every analysis step. Switching back and forth between
interfaces during the analysis irritated the user. This led to our final
view arrangement with two permanently shown major visualization
components that can be adapted on demand.

Based on our initial analysis sessions with the final prototype, the
two involved geoscientists denoted our approach as the first to enable a
comprehensive investigation of the complete time sequence of categori-
cal sequences. During both analysis sessions, time periods of similar
climate and environmental conditions known from other studies were
confirmed. The ability to generate novel hypotheses was highlighted as
a strength of our approach. Also, the reduced effort for investigating
hypotheses compared to other methods was emphasized. Our tool un-
loads the analyst from tedious data processing and allows focusing on
domain-specific analytical questions.

Further, we gathered feedback during a demonstration of our tool
to eight members of a leading research group in landscape and climate
development. During the demonstration, we observed that our tool
immediately enforced discussions about dependencies between cate-
gorical state sequences and temporal developments. This is a strong
indication that our visual interface effectively reveals structures in mi-
crofacies data sets. Beyond, our tool was denominated as the first
systematic analysis method for microfacies data. It was identified as
“a missing bit in our method portfolio”, as it allows to fully utilize the
information provided by microscopic analysis. Our approach proposes
a novel standard for analysis and visual representation of microfacies
data, which is generally applicable to data from different lakes.

8.3 Discussion
We conclude from our initial evaluation that our concept is suitable to
analyze microfacies data from lake sediment cores. Applied to data
set with many unique sequences (use case 1), the geoscientist gains
the ability to identify similar categorical sequences. Even though we
tailored our approach for highly variable data sets, the evaluation also
indicates its usefulness for data sets with little diversity among se-
quences (use case 2). By redefining states for different sets of attributes,
novel findings about temporal developments were derived. The analyst
took advantage of the ability to quickly identify the temporal context
of unique categorical sequences. The second use case also showed a
limitation of our approach. In the investigated data set, semantic rela-
tions do not predominantly result from the sequence of states. Instead,
they result from the states’ multivariate values. Our tool is not designed
to handle multivariate relations among states, as we consider all states

as categorical. The challenges of defining and considering similarities
among states is a current research topic [12].

Our concept has been designed for the specific application of under-
standing microfacies data. Still, the resulting concept provides a general
solution to the problem of finding similar time points in a series of cat-
egorical sequences. Our methods do not explicitly incorporate domain
knowledge. The automatic extraction of unique sequences, temporal
occurrences, and frequency are domain-independent. The similarity
measure is general for categorical sequences, but can be changed for
other applications. Domain knowledge is introduced into the analytical
process by human assessment, it is not formalized within the methods.
In this regard, our approach is adaptable to other application fields with
similar data and similar tasks.

The scalability of our approach is affected by number of states,
lengths of sequences, number of unique sequences, and number of time
points. Our concept scales well to domain-specific data sets. Consider-
ing the visual design, it also adapts to longer sequences, more unique
sequences and more time points within the same order of magnitude.
A crucial aspect for scalability of the visual design is the number of
states. More states significantly affect the user’s ability to discern se-
quences of states. We estimate an upper limit of 10 to 12 categories.
This limitation is not specific to our approach, but presents a general
analysis challenge for categorical data.

Considering the scalability of computational methods, the most
relevant operation is the ranking of sequences. It is performed numerous
times during the analysis. The ranking involves two steps: the feature
set of every unique sequence is generated and the similarity measure
is applied. We compute the feature sets only once, at the beginning of
the analysis. During analysis, the similarity values are computed very
fast. The Jaccard-Index requires one set operation and few algorithmic
operators per unique sequence. The computational effort increases
with the number of unique sequences and the sequence lengths, which
directly affect the sizes of the feature sets. In several experiments,
we doubled and quadrupled the feature sets and the unique sequences
compared to the data set in Sec. 8.1.1. While the initial generation
of the feature sets required more time (in the range of seconds), we
did not observe that the computation time for the ranking of sequences
increased significantly.

9 CONCLUSION

We have introduced a visual analysis concept that supports the anal-
ysis of microfacies data from sediment cores. Our approach enables
analytical investigations that were not carried out before due to high
analytical efforts. We conclude from our use cases that our prototype
facilitates the identification of similar sequences. The analytical results
reveal interesting findings, whose relevance has been confirmed in other
geoscientific studies. According to the domain experts, our approach
defines common standards for the analysis of microscopic data from
sediment cores of different lakes. Thereby, we close an important
methodological gap in the application domain, as our concept promotes
the utilization of the rich information provided by microscopic analyses
from sediment cores.

A major benefit of using a visual analytics approach is that it allows
geoscientists maintaining their domain-specific perspective during the
analysis. With our visual interface, geoscientists focus on solving their
domain-specific analytical problem instead of learning how to deploy
computational analysis methods.
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