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Abstract—Finding good projections of n-dimensional datasets into a 2D visualization domain is one of the most important problems in
Information Visualization. Users are interested in getting a maximal insight into the data by exploring a minimal number of projections.
However, if the number is too small or improper projections are used, then important data patterns might be overlooked. We propose a
data-driven approach to find minimal sets of projections that uniquely show certain data patterns. For this we introduce a dissimilarity
measure of data projections that discards affine transformations of projections and prevents repetitions of the same data patterns.
Based on this, we provide complete data tours of at most n/2 projections. Furthermore, we propose optimal paths of projection
matrices for an interactive data exploration. We illustrate our technique with a set of state-of-the-art real high-dimensional benchmark

datasets.

Index Terms—Multivariate Projections, Star Coordinates, Radial Visualization, High-dimensional Data

1 INTRODUCTION

To a large extent, Information Visualization deals with high-
dimensional datasets, i.e., data that can be described as point sets in
a high-dimensional space. Finding appropriate projections into 2D (or
3D) is a standard problem in Information Visualization for which a
variety of approaches have been proposed. Traditional data projection
strategies often provide a complete tour through the space of all data
projections, that quadratically or even exponentially grows with the
dimensionality n of the data. Due to the large number of projections,
such techniques tend to be exhausting for the user, even if » is rather
small. Further approaches aim to reduce the number of dimensions,
bearing the risk to overlook and lose important data patterns. Beyond
that, no approach avoids the repetitive view on similar data patterns.

Finding good data projections is a non-trivial problem due to the
following two reasons. Firstly, every projection discards information
about the data while introducing distortions. Secondly, the space of
all possible projections is large. To evaluate how useful a certain pro-
jection is, a variety of quality measures have been proposed. They
describe the quality of a particular projection by a certain number.

In this paper, we propose a new approach to find relevant projec-
tions. Instead of evaluating the quality of a single projection, we intro-
duce a simple measure of how much more insight is provided by a new
projection if a number of other projections are already presented. Our
main assumption here is that a new projection does not provide new
insight if it can be obtained by a linear combination of optimal affine
transformations of the already existing projections. Figure 1 illustrates
the concept: the two projections p; and p; of a high-dimensional point
set are considered similar because p, can be obtained from p; by an
affine map. Contrary, if p; is given, the new projection p3 gives new
insight because it cannot be obtained by an affine map from p;. In
fact, p3 shows that the data consists of (at least) two clusters which
could not be seen in py. Finally, if p; and p3 are given, py still gives
additional information about the data because no linear combination
of affine transformations of p; and p3 can give p4.

The discarding of affine transformations for comparing projections
is justified in the following observation: one of the most common re-
search questions is to find patterns and clusters in the data. If a projec-
tion reveals e.g. two clusters, the same clusters are usually visible in
an affine transformation of the projection. Moreover, if two clusters in
the high-dimensional data space are projected to the same location in
2D (i.e. they cannot be distinguished in the projection), our approach
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Fig. 1. Four projections of a real high-dimensional benchmark dataset:
p: and p, are similar; p; and ps are different; p4 gives new information
if p; and p3 are known.

prefers new projections that distinguish the two clusters. In detail, we
make the following contributions:

e We introduce a mathematical formulation for a dissimilarity
function of a new projection that encodes how much new in-
sight the projection contributes in relation to a certain number
of already present projections. Section 3 introduces the measure.

e Based on this, we apply our mathematical approach to propose a
greedy approach to find a low number of projections describing
the dataset completely. The main idea is to insert new projec-
tions with a maximal distance to the projections being already
present. We use this to define short and complete data tours. See
Section 4.

e We introduce a mathematical approach to interactively explore
the data by smoothly changing the projections in such a way that
either maximal new insight is gained by a small change of the
projection, or that the result of the projection is kept as constant
as possible while changing the projection parameters. See Sec-
tion 5.

We discuss parameters of the approaches and test them on high-
dimensional benchmark datasets in Section 6.

2 RELATED WORK

Related work stems from the area of multivariate projections, data
tours, and quality metrics.

Affine and Projective Projections: A family of multivariate embed-
dings have been introduced as RadViz [12, 19, 8, 7] and Star Coordi-
nates [15, 16]. The approaches define a multivariate projection from
nD data space to the 2D visualization space. They introduce additional
distortion which lead to confusion during a visual search.
Orthographic Projections: The multivariate Orthographic Star Coor-
dinates [17] generalize the concept of bivariate orthographic projec-
tions, such as scatterplots. They prevent distortions by maintaining
a set of orthography-preserving constraints. However, the mentioned



multivariate projections do not consider the data itself, even though
the inherent structure of data needs to be considered for the selection
of a good projection. We introduce a data-driven strategy for choosing
a small set of optimal projections. Regarding this, the Projlnspec-
tor [20] proposes an interactive exploration technique for a set of ba-
sic projections in order to find interesting combinations of them. Our
approach does not require an interactive stage to find interesting pro-
jections. In addition, the set of projections our approach produces can
be utilized as such basic projections, and thus our approach can be
well combined with the ProjInspector.

Distance-based Projection Techniques: The multidimensional scaling
(MDS) [27] preserves distances between the data records under pro-
jection via the spectrum of a data-dependent centered distance matrix.
PCA-based techniques also belong to this family of techniques. With
Glimmer [13], a high-performance approach for multilevel MDS on
graphic processing units is known. The large amount of distance in-
formation required to build up a projection can be reduced by part-
linear multidimensional projection (PLMP) [21] to a small number of
pairwise distances between a number of representative data samples,
which substantially increase performance of the projection process.
Local affine multivariate projection (Lamp) [14] provides a local data
projection technique by minimizing the distances of the projected data
points with the aid of (interactively) initialized seed or control points
in the visualization space. Our approach does not optimize data-based
distances to find a good projection. Instead, it optimizes a measure
between different projections in order to discard affine transforma-
tions. In fact, it could be combined with distance-based projection
techniques.

Data Tours: A data tour is given by a set of (relevant) projections be-
ing a subset of the projections space, which can be investigated by the
user for the purpose of visual data analysis. A time sequence of a set of
projections is provided for conducting a visual data exploration. The
projection pursuit [11, 6] and the grand tour [3] provide a greedy tour
of (bivariate) projections, which exponentially grows with the number
n of data dimensions. They allow to intuitively detect patterns of inter-
est in the data, but they are time consuming, especially with growing
n. Our concept provides a smart tour with a lower and optimal number
of projections that is guaranteed to be free of redundancies, but still
visits all important views of the data.

Quality Metrics: Their basic idea is to map a quality (correlation,
cluster, trends) of a projection onto a real number. With this fil-
tering tool, a set of good projections might be identified. For this,
a collection of precomputed projections is rated and the worst ones
are rejected. A set of metrics are available and established, such as
[28, 22, 24, 1, 2, 26, 23]. We refer to [5] for further details. Quality
metrics are useful to find good projections but they have a computa-
tional overhead regarding the number of required projections. Clearly,
the vast majority of precomputed projections will be rejected. We in-
troduce an alternative concept that avoids the computational overhead
of quality metrics.

In the following, we establish a dissimilarity measure for projec-
tions.

3 A DisSIMILARITY MEASURE FOR PROJECTIONS

The n-dimensional dataset is given as m data points d; =
(dijs..rdn,j)T for j=1,...,m, resulting in an n x m data matrix

Data = (dy,...,dy). (D

In this paper, we restrict ourselves to 2D Star Coordinates, i.e., linear
projections that are defined by a 2 x n matrix A. Then the projection
of a point d; is A -d;, and the matrix of all projected points is the
2 x m matrix A - Data. Note that A can be interpreted and visualized
as the projection of the high-dimensional coordinate axes: for A =
(X1,..,Xn), we have (x; —0) = A -i; where 0 is the 2D origin and
i;=(0,...,0,1,0,...,0)7 is the i’ coordinate axis fori = 1,...,n.
—— N
i—1 n—i

The projection matrices Ay, ..., A, define a number r of projections. To
define the dissimilarity of a new 2 x n projection matrix Bto Ay, ..., A,,

we consider an affine transformation of each projection that is given
by a 2 x 2 matrix Q; and a translation vector r;. We define

1 r
E=B-DataffZ(Q,--A,-~Data+(r,-,...,r,-)) 2)
m
and search for the Q; and r; that minimize the Frobenius norm of E.
This gives the dissimilarity of B to Ay, ...,A;:

1 .
dBA1,..,A)=—  min [E. ©)

m Qp,....Q, 1,01y

Figure 2 illustrates the dissimilarity function for n = 3,m = 65,r = 1.
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Fig. 2. Dissimilarity function for n = 3,m = 65,r = 1; a) n-dimensional

dataset Data; b) projection by A ; c) projection by B; d) best affine trans-
formation of projection A;; e) distance of B,A;.

Given Data,A,...,A, and B, (3) is a quadratic minimization prob-
lem with the unknowns Q;,r;. To formulate its closed-form solution,
we consider the problem in homogenous coordinates:

A, O
m:(dll dlm),x: P j:(OBO ‘1’)
A0
0.0 1

where Data is the homogeneous data matrix, A is a (2r+1) x (n+1)
matrix of all known projection matrices A;, and B is the new projection
matrix in homogenous coordinates. From this we compute a solution
of this minimization problem as

D — Data-Data’ 4)

=]
Il

(Lﬁ.XT.(X.ﬁ.XT)".X).m )

where T is the (n+1) x (n+ 1) unit matrix and H is an (n+1) x m
matrix with a vanishing last row. Note that X-EKT) is a symmetric

quadratic (2r+1) x (2r+ 1) matrix, depending on r. Since r <n <<m
usually applies, the calculation of the inverse performs well and is only
weakly affected by the curse of dimensionality. Further we get

E=B'H (6)

where E is a 3 x m matrix with a zero third row. E is the homogenous
version of (2) with optimal Q;,r;, i.e.,

1 -
d(BvAl:~~~7Ar) = m HEH%‘r @)

The proof of (7) is provided in Appendix 1. The behavior of d under
scaling of the projection matrices is given by

d(BB,oyA,...,00A,) = B d(B,Aj,...,A,) 8)



for any real B and real non-zero ;. The o; have no influence because
of the discarding of affine transformations, the linear behavior in f is
due to the fact that d essentially adds up Euclidean distances of the
projected points.

4 GRADIENT ASCENT FOR OPTIMAL PROJECTIONS

Based on the dissimilarity measure for projections, we present an al-
gorithm to find a finite (low) number of projections that represent the
high-dimensional data best. The main idea is to find projections that
have a large dissimilarity to each other. We propose a greedy algo-
rithm: starting with a projection Ay, we repeatedly find new projec-
tions A1,A,,... until a new projection does not give new insight into
the data. Given Ay, ..., A;, we search for A;; | such that it has maximal
dissimilarity to Ay, ...,A;. For this, we apply a gradient ascent of d:

By = A )
Bi,i = orth(B;+AVgd(B,Aj,..A))
and stop if |B;1; —B j”%r < p. The convergence parameter p, as a
numerical parameter, steers the lower bound that has to be reached to
stop the algorithm. It influences the performance of the ascent, and it
also might influence the final number of projections. See Sec. 6.4 for
details. Then A;; 1 = B 1. The whole algorithm stops if Ao, ..., A; are
complete, i.e., for any new projection B we have d(B, Ay, ...,A;) = 0.
In (9), the function orth() computes the projection of a matrix to its
closest orthographic projection matrix by applying a Gram-Schmidt
orthonormalization to the row vectors [17]. Due to the scaling behav-
ior of d described in (8), it is required to restrict the length of row
vectors in B to one, which is done by this orthonormalization. (6),
(7) give that gradient Vgd of d in the variables B can be computed as

2

= = =T
Vgd(B.A....A)= " B-HH (10)

being a 3 x (n+ 1) matrix where both the last row and the last column
is zero.

Our algorithm has the following parameters: the start projection Ay,
the step size A for the gradient ascent, and the convergence parame-
ter p. While choosing A = 1, the other parameters are discussed in
Section 6.4 and 6.5.

5 INTERACTION CONCEPTS

We describe an approach for an interactive analysis of a dataset by
smoothly changing the projection matrix A. This means that we con-
sider a time-varying projection matrix A(z) where we use our dissim-
ilarity measure to compute its path from an initial projection A(zg)
and some user input. For this, we propose two strategies: maximal
deformation or minimal deformation of the projection. For maximal
deformation, the path should consist of a sequence of projections that
are maximally distant to their neighbors. In other words: for maximal
deformation, the projection A(z) - Data should have maximal changes
under minimal changes of A(t). Contrary, for minimal deformation,
the projection A(¢) - Data should have minimal changes under max-
imal changes of A(z). This strategy aims to provide information on
which coordinate axes are dependent on each other.
For both strategies, we apply an Euler integration of A (¢):

Atiyr) = At) + (tig1 — 1) An) (1D
where the time derivative A of A is unknown. For the strategy of
maximal deformation, A(;) is chosen to maximize d(A(fi11),A(t;))
for (t;+1 —t;) — 0. This is an eigenproblem: setting » = 1, we consider

the largest eigenvector €,,1 of H- H’. Note that €,.1 describes the
optimal row in the projection matrix A for both the first and second
row of A. Since €, is an eigenvector, its length is undefined, gives
us two degrees of freedom ¢, 3 for scaling €, | in each row of A. This
gives:

A= (a1, Beur, 0,41) (12)

where 0,1 is the (n+ 1)-dimensional zero vector. Then «, 8 are sub-
ject of user interaction: the user can draw the 2D path of the projection
of a coordinate axis x;(¢) of A(¢) from which we get is tangent %;().

This gives the parameters ¢, 3 by X; = (€,41).i g where (€,+1).i

is the i component of €, 1.
For the strategy of minimal deformation, we consider the third-

. _ = =T = =T
smallest eigenvector €3 of H- H . Note that H-H" has at least two
vanishing eigenvalues, reflecting the discarding of the affine transfor-
mations of the projections. Then we get

A=(ae,Be, 057 (13)

with a similar treatment of @, B as above.

6 EXPERIMENTS

As proof of concept, we present a set of approach-related experiments.
A plain hardware configuration is sufficient and supported by our ap-
proach. Hence, our experiments run on a mobile workstation with a
2.4 GHz 64 Bit Intel CPU with 8 cores, 12 GB RAM, and WIN 7 OS
in single-core and single-thread mode.

We introduce the used benchmark data in Sec. 6.1, we illustrate
the interaction tool in Sec. 6.2 and the optimal set of projections in
Sec. 6.3, which are compared with the commonly used PCA-based
approach for visual data exploration. In Sec. 6.4, we investigate the
stability of the gradient ascent regarding the influence of convergence
parameter p and, in Sec. 6.5, regarding the initial projection Ay (cf.
Sec. 4).

6.1 The High-Dimensional Test Datasets

Five high-dimensional test datasets are used from the UCI data
base [4]: Iris [9], Yeast [18], Wine [10], Wdbc [25], and Cars [4].
Table 1 points the data characteristics.

Dataset Dimensions Records Classes
Iris 5 150 3

Yeast 10 1484 10
Wine 14 178 3
Wdbc 32 569 2

Cars 33 7755 52

Table 1. Characteristics of the benchmark test datasets.

In detail, the Fisher’s Iris plants data base consist of 5 dimensions
with 150 records. It gives measurements of the sepal as well as the
petal length and width for three iris species. An amount of protein
localization sites is given in the Yeast dataset, with 10 dimensions and
1484 records. It is usually used to develop probabilistic classifica-
tions systems in order to predict properties of proteins. The Wine data
consist of 14 dimensions with 178 records. It stems from a chemical
analysis of three cultivars of wine which have grown in the same Ital-
ian region. Thus, wine-specific characteristics are summarized, such
as the level of alcohol, the amount of phenols, or the color intensity.
The Wisconsin Diagnostic Breast Cancer aka Wdbc consists of 569
records with 32 quantitative dimensions each. It contains a set of at-
tributes of cell nucleus measurements that are obtained from breast
cancer patients. It turned out that a linear separation by a 2D classifier
based on the attributes area, texture, and smoothness allows to diag-
nose benign and malignant cancer cells. The Cars data base contains
33 dimensions and 7755 records. A broad parameter set for differ-
ent car models is provided, which encompasses attributes, such as the
number of cylinders, the maximum velocity, or the power of a car.

Note that a potential a priori classification within the data is not
within the focus of our approach or even required. Thus such cases
are treated as usual dimensions. Furthermore, to guarantee a fair com-
parison between outcomes, to avoid numerical influence, and to re-
duce scaling effects, we linearly normalized the data within the inter-
val [0,1]. Since affine transformations are removed, the normalization
does not negatively affect the quality of the optimal set of projections.



6.2 Path-based Interaction

We treat the interaction concept of Sec. 5. Figure 3 presents a rep-
resentative coordinate axis interaction for the Wine (Figure 3 (top))
and Yeast dataset (Figure 3 (bottom)): A coordinate axis is moved
along a (green colored) path to yield time-varying projections A(z),
shown by Figure 3 (middle). We present the projections A(z)-Data
at time-points #;,i = 1,...,4 for both the minimal deformation (Fig-
ure 3 (left)) and maximal deformation case (Figure 3 (right)). It can
be seen that the maximal deformation projections are different to each
other, reflecting the maximization of the dissimilarity measure during
the interaction. In contrast to that, the minimal deformation projec-
tions produce similarly shaped outcomes and are similar to the initial
projection.

Minimal Deformation
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Fig. 3. Minimal (left) and maximal (right) deformation of data patterns
during identical interaction in the Wine (top) and Yeast (bottom) dataset
along an interaction path (green).

To preserve minimal or cause maximal dissimilarity between projec-
tions might lead to fluctuations of eigenvectors (cf. Sec. 5), even
though the function of eigenvalues itself is smooth over the interac-
tion. This effect is caused by data characteristics and might lead to
jitter of A(¢). Thus, it provides additional structural data insight. In
the following, we construct optimal sets of projections of the test data.

6.3 Optimal Set of Projections for Test Data

The gradient ascent of Sec. 4 is applied to the test data. For this, the
question of an appropriate initial projection arises: An established ini-
tial standard configuration A” of a multivariate projection is the radial
layout [17, 15], given by

AT = (XO"“”‘"*) with (x;,y;)7 = b- (sin(i- ), cos (i- )T
Y05+ Yn—1

and i =0,...,n — 1 whereas o = 27” and b = /2/n. Following
[17], an alternative construction scheme of an orthonormalization (cf.
Sec. 4) is given by using a radius b = /2/n, meaning that A" be-
comes an orthographic projection. It is an appropriate candidate for
the initial projection Ag of our gradient descent. Thus, our approach
defines Ay = AT as the initial projection for the gradient ascent with
the convergence parameter p = 0.1.

The Figures 4 and 5 illustrate the optimal set of projections pro-
duced by our approach (top) in comparison to the same number of
best PCA-based projections (bottom), w.r.t. our benchmark datasets
(cf. Sec 6.1). PCA is given by the eigenvectors e;,i = 1,...,n of the
data’s covariance matrix, which minimizes correlation and maximizes
variance. Pairwise eigenvectors define a 2 x n projection A;; = ¢; /=

(e e j)T. Note that the complete number of PCA projections grows

quadratically in the dimension number n, while the number of our
set of optimal projections grows linear in n. For instance, the Wine
dataset with n = 14 dimensions has a total number of 91 PCA-based
projections (which can be found in the additional material), while our
optimal set only requires 7 projections. However, in order to provide
a fair comparison that reflects the use of PCA in practice, a subset of
the largest pairwise eigenvalues is presented for each case, which has
the same number of projections as our optimal set.

For our optimal sets in the figures, the annotated dissimilarity
label d of a projection A; describes the dissimilarity to the sub-
set of predecessor projections {A,,...,A;_1} referring to (7) as
dB,A,,...,A;_1) = d(A;) with B=A,;. Consequently, we treat the
PCA projections similarly: the dissimilarity label d of a PCA projec-
tion e;/; also describes the dissimilarity to the subset of predecessor
PCA-based projections. This comparison setup facilitates an empiri-
cal comparison of the dissimilarity behavior for both techniques. Keep
in mind that a larger dissimilarity means that more data insight is given
with a certain projection. Finally, the dissimilarity behavior is summa-
rized by a graph at the end of each projection sequence for each dataset
and projection technique.

For our optimal sets, it can be seen that the dissimilarity rapidly de-
creases with growing index i, i.e., d(A;) > d(A;y) withi>1,...r—1.
This appears to be plausible, since the degree of freedom to find a pro-
jection that cannot be generated as affine transformation gets small if
a sufficient number of projections is available. In fact, only the first
two, three or occasionally four projections of the optimal projection
set show relevant data patterns. Clearly, stopping the ascent in early
stages would still lead to projections showing the most important pat-
terns. Beyond that, our experiments illustrate that the number r of
projections is optimal with r < 7.

In comparison to that, each new PCA-based projection only pro-
vides little additional insight compared to the first PCA projection e} />
for each case: The dissimilarity values are much smaller and almost
negligible compared to those of our optimal set of projections. On the
other hand, relevant patterns that are shown by the PCA-based pro-
jections can also be seen in the set of optimal projections. Thus, our
experiments empirically illustrate the advantages of our optimal set of
projections compared to PCA.

6.4

The convergence parameter p influences both the dissimilarity
between successively selected projections during the gradient ascent
and the algorithm’s performance and convergence behavior. In fact,
a too large value of parameter p would cause projections that have a
small dissimilarity to each other. Thus, the parameter should be rather
small in order to facilitate projections that have a large dissimilarity
and thus provide new data insights. On the other hand, if p is chosen
too small, then the algorithm’s performance decreases. In order to
find a good choice of the convergence parameter p, we investigate
the algorithm’s behavior for a set of small values, such as p = 0.1,
p = 0.01, and p = 0.001 (with Ag = A™). Figure 6 illustrates the
results.

Influence of Convergence Parameter

Intra Set Differences: Figure 6 (left) shows column-wise the intra
set differences d(A;) the of projections A;,i = 1,...,r for each value
of p and row-wise for the test data. It can be seen that the patterns
are comparable and only weakly dependent on p. Furthermore, the
calculation time grows approximately logarithmically in p.

Inter Set Differences: We are interested in a comparison of
the projections with the same index i but different values in p:
Be Ap = {Ap,...,A,} the set of projections wrt. p, and be
A, (i) = A; a projection of it, then we define the inter set difference
d(i,pr,p1) = d(Ap(i),Ap,(i)) as the dissimilarity between projec-
tions with the same index in different sets that are based on different
values of p. Figure 6 (right) shows the inter set differences d(i, py, p;)
with i = 1,...,r. The differences behave quite stable and barely
independent of the accuracy of p.
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Intra vs. Inter Set Differences: Be dj,;;, the maximal intra set
difference and be dj,;., the maximal inter set difference, then we get
the pairs (djnsra; dinter) for Iris as (12.535,0), for Wine as (45,2.35),
for Wdbc as (338,12.5), and for Cars as (2079,243). It follows that
the observed inter set differences that are caused by a coarser accuracy
of p are rather small and negligible compared to the dominant intra set
differences. Finally our experiments shows that a convenient choice
of convergence parameter is p = 0.1.

6.5 Influence of Initial Projection

In this section, we investigate the influence of the initial projection
Ay. For this, we conduct the gradient ascent with noisy versions of the
initial projection Ag = A™: be R; a 2 x n matrix with randomly chosen
column vectors that have a p2-norm of / each, then a noisy version AT
is given by AT = A" +R;. The larger  the noisier A" becomes. We
did 100 runs of the ascent for each value / =0.2,0.4,...,1.2 and being
started with AT.
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Fig. 6. Influence of convergence parameter p: (left) Intra Set and (right) Inter Set Differences for test data.

Be d(A;,1) the dissimilarity to the subset of predecessor projec-
tions {AT,Aq,...,A;_1} for such a set of projections that results
if the ascent starts with AT. We define the inter set dissimilarity
d(A;,1,0) = |d(A;,1) — d(A;,0)| of projection A; to the projections
with the same index i that result by starting the ascent at A*. For a
projection A; over all runs with the same I, we stored its mean inter
set dissimilarity dy (A;,1) = 135 L1% d(A;,1,0) as well as the maxi-
mum/minimum dissimilarity d;, (A;,7,0)/ dmax (A4, 1,0).

Figure 7 illustrates the results. It can be seen that the mean inter
set dissimilarity dy, (A;, ) is stable: an unstable behavior could be rec-
ognized by an exponential growth in dy (A;,l). However, this is not
what we observe. Instead, we observe a converging behavior against
similar projections even though the initial projection becomes defuse.
Figure 8 (a) illustrates this ability in detail for randomly chosen runs of
the Wine dataset for different /: the first five projections of the optimal
set can be seen each. Especially the different projections A stably
show the main pattern in that data, which is shaped like a rotated ver-
sion of the letter 'u’, independently to the start projection Ag.

We are also interested in the behavior if the initial projection is ran-
domly chosen, for instance by a user-based interaction. Regarding this,
Figure 8 (b) row-wise illustrates the first five projections of the optimal
set with respect to three randomly chosen inital projections A of the
Wine data. Interestingly, prominent data patterns, such as the u’ pat-
tern in A, are still visited in each case. In fact, our experiments show
that relevant data patterns are found independently of the chosen start
projection A (please find further examples in the additional material).

7 DISCUSSION AND LIMITATIONS

Improvements, advantages, and limitations of our approach will be
discussed in this section.

Why discarding affine transformations?: In Information Visual-
ization, depending on the application and the dataset, different goals of
a visual analysis are possible. Among them there are universal goals
that are relevant to all applications: the segmentation of the data points

into meaningful clusters. While there is a large amount of cluster defi-
nitions for an automatic clustering, visual clustering [29] has been es-
tablished as an interesting alternative, i.e., an interactive process where
the user manually marks the clusters in appropriate projections. This
has the advantage that no prior knowledge about shape or properties
of the clusters are necessary. We argue that for a visual clustering,
affine transformations of the projections are of less relevance: regions
that are clearly visually distinguishable remain distinguishable after
an affine transformation. Please note that the human perception sys-
tem is not rotationally invariant, and thus the setup for the presentation
of projections influence the users’ capability to recognize important
structures. Nevertheless, it is paramount to have such a set of pro-
jections available that mutually bear the most structural information
regarding the data, which is the focus of this work. Then, to ask for
a well designed presentation in order to show the set of projections to
the user is not within this paper’s focus.

Relation to quality metrics: Quality metrics measure the quality
of a single projection. In contrast, our approach measures the quality
of a projection relative to a number of already present projections. In
this sense, our approach is orthogonal to existing quality metrics. In
fact, they can be used as starting point of our approach.

Dependence on the starting projection: Our approach is
parametrized by a start projection Ag (cf. Sec. 6.5). Even though
the choice of this projection influences the set of optimal projections,
the relevant data patterns, or variations, stably remain visible. Hence,
the final result regarding a visual search is less dependent on Ag.

Completeness of sets of projections: Given a dataset with
rank(D) = n+ 1, the space of all Star Coordinates under discarding of
affine transformations is completely described by n;, = abs(%5) linear
independent projections: we can find n;, linear independent projections
Ay, -~~:An;, Withd(Aj,Al,...,Aj,],AjJrl,..‘,Anb) >0forj=1,...,np,
and d(B,Ay,...,A,,) = 0 for any projection matrix B. The value of
n/2 intended projections can be explained as follows: the space of
all projections is 2n-dimensional, since a projection matrix A; consist



Iris

Dissimilarity — Dissimilarity — Dissimilarity Dissimilarity Dissimilarity — Dissimilarity —
=0.2]|[5F =0.4] % =1.0]|[*
24 2 2 24 2 24
0 0 0 0 0 0
W A0 Al A2 A0 Al A2 A0 Al A2 A0 Al A2 A0 Al A2 A0 Al A2
ine
Dissimilarity — Dissimilarity — Dissimilarity Dissimilarity Dissimilarity — Dissimilarity —
o5 . [0=0.2]]|% . [O=0.4]|[> . [1=0.6]|[> - .[1=0.8]|[> . [O=1.0]| > =1.2
v 7 T T T T ¥ 0 T T T T T T 0+ T 0 T T T
o A0 A6 ° A0 A6 A0 A6 A0 A6 A0 A6 A0 A6
dbc
Dissimilarit Dissimilari Dissimilarit Dissimilarit Dissimilari Dissimilarit @
4|9:;:;|m|an%y =0.2 4|955|m|ar|s§y 1=0.4 4|95$|m|ar1“y =0.6 4|_os:;|m|ar|my 1=0.8 4|9 imilarity =1.0 Dissig ity =1.2
324
241
161
8 4
T T T T T — T 0 T 0 T T
Ao A8 || ° Ao A8 || ° Ao As || * A0 Ag || Ao A8 || % Ao A8
Cars
Dissimilarit Dissimilarit Dissimilarit Dissimilarit Dissimilarit Dissimilarit
25 R ey (=043 [=06]|[3m e [=08]|[3% ™ [=Lo0)|[%=" [=12
AQ LT A3 AOI ........ AL3 AOI ......... A3 [¢] AOI ......... AL3 0 AOI ......... A3 0 AOI ......... AL3
d;t dmin dmax

Fig. 7. Influence of varying start projection Ag.

of 2n independent entries. By discarding affine transformations, each
projection matrix A; loses 4 degrees of freedom. A matrix A; with all
its affine transformations forms a 4-dimensional subspace of the space
of all transformation matrices. Hence, n/2 projection matrices with its
affine transformations are enough to cover the transformation space.

Relation to MDS and PCA: MDS usually provides one as
distance-preserving as possible projection, from nD to 2D space. Ap-
plying an affine transformation on a MDS M, such as rotation and
scaling, yield an equivalent or identical MDS configuration. Follow-
ing (7), two MDS configurations M; and M; are identical, i.e. they
convey the same information, if d(M;,M;) = 0, meaning they can be
mapped to each other by affine transformations. In addition, PCA pro-
vides a set of partly relevant projections. It contains relevant projec-
tions but also a number of them that lead to visual noise. See an exam-
ple of this behavior for the Wine dataset in the additional material. The
ratio of relevant projections is higher with our approach, meaning that
our set is less repetitive, making a user-based visual search more feasi-
ble. This is reflected by the fact that the number of projections grows
quadratically in n for PCA, for our optimal set it grows linearly in
n. Moreover, PCA requires Gaussian-distributed data to perform op-
timally, otherwise relevant data patterns might be undetectable. Our
approach does not have such a requirement. Lastly, PCA performs
differently if different data normalization approaches are used. Since
affine transformations do not affect the result of our approach, our op-
timal sets behave more stable regarding data normalization.

8 CONCLUSION

We provided a novel approach to measure the dissimilarity of multi-
variate projections disregarding affine transformations. It is based on
the idea that a new projection in a tour should have a large dissimi-
larity to all projections that were already presented, in order to ensure
the presentation of new data insights. Based on this measure, a small
set of optimal projections is automatically selected by our approach. It
makes a projection-based visual search more feasible for a user, since
the number of projections is restricted to n/2. For the future, we are

interested in the investigation of further measures that can be applied
to a number of projections. For instance, to automatically detect a
number of prominent projections which optimally describe the data.

APPENDIX 1:
Proof that (4)-(7) is the solution of the minimization problem (3):

Defining Q; (OQ;) rl,) for i =1,...,r, we can write (2) in ho-

mogeneous coordinates

E =B Data— (14)
Note that E in (2) and E in (14) are identical except for an additional
zero row in E. Introducing the 3 x (2r + 1) matrix of all unknown
affine transformation parameters

< (()Ql() OQ,O r| +.;.+rr) ’ (1)
(14) can be written as
E=B Data— X-A-Data (16)
Then the condition for X to minimize || E|Z, is
E.m.(x.m)u%ixm.(xmf (17)
which can be solved to
X=rB-D-A -(A-D-A")". (18)

Inserting this into (16) gives (6) with (4) and (5).



Fig. 8. Case study: (a) Influence of noise to the initial radial configuration and the resulting set of optimal projections for the wine data.(b) Random
walk for the Wine dataset: the inital projections A, are randomly chosen.
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