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A Study on Quality Metrics vs. Human
Perception: Can Visual Measures Help us to
Filter Visualizations of Interest?
Dirk J. Lehmann, Sebastian Hundt, Holger Theisel

Abstract: The number of visualizations being required for a complete view on data
non-linearly grows with the number of data dimensions. Thus, relevant visualizations
need to be filtered to guide the user during the visual search. A popular filter approach
is the usage of quality metrics, which map a visual pattern to a real number. This way,
visualizations that contain interesting patterns are automatically detected. Quality
metrics are a useful tool in visual analysis, if they resemble the human perception. In
this work we present a broad study to examine the relation between filtering relevant
visualizations based on human perception versus quality metrics. For this, seven
widely-used quality metrics were tested on five high-dimensional datasets, covering
scatterplots, parallel coordinates, and radial visualizations. In total, 102 participants
were available. The results of our studies show that quality metrics often work similar to
the human perception. Interestingly, a subset of so-called Scagnostic measures does the
best job.

ACM CCS: Human-centered computing → Visualization → Empirical studies in
visualization
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1 Introduction

Nowadays, the visual analysis of high-dimensional data has
become a major task within the field of data analysis. Gene-
rally, dealing with high-dimensional data means to be faced
with a scalability issue: the number of visualizations grows
non-linearly with the number of data dimensions. Quality
metrics measure a certain quality of a visualization – e.g.,
correlations, clusters, and trends – and map it onto a real
number (see [Lea12b] for details). They are a tool to filter
relevant visualizations. If they resemble the human percep-
tion system, such quality metrics are useful. To figure this
out it is important to continuously evaluate if the available
quality metrics are related to the human perception system.
In this work, we therefore evaluate a popular set of quality
metrics for different visual tasks.

2 Related Work & Background

In our study, we consider bivariate scatterplots (SP), paral-
lel coordinate plots (PCP) [Ins85] and multivariate radial
visualizations (RadViz) [Hea97]. A scatterplot is a visua-
lization of pairwise dimensions generated by an orthogra-
phic projection of the data records onto a two-dimensional

plane. Interpreting two data dimensions in a plane as verti-
cal axes yields a PCP: therein, a data record is represented
as a line where the start/end vertex is placed on the axes
with an intercept that relates to the component value of the
record w.r.t. the related dimension. For radial visualizati-
on, the data dimensions are represented as anchor points
within a radial layout. A spring force is assumed as being
the component of the related dimension w.r.t. a certain re-
cord. The position of a record is where the spring forces
vanish. In general, an a priori classification of the data is
visually stressed by labeling the visualization, denoted as
a classified visualization. For this, different color schemes,
icons, or glyphs might be used to visually emphasize diffe-
rent classes. Consequently, an unlabeled visualization is de-
noted as unclassified visualization. Figure 1 illustrates the
three considered visualization approaches.

A broad set of quality metrics for visualizations are known.
Sips et al. [Sea09] and Tatu et al. [Tea09, Tea11] propo-
sed a quality metric collection for both scatterplots and par-
allel coordinates. The Rotating Variance Measure detects
correlations for unclassified scatterplots. Classified scatter-
plots can be handled with the Class Density Measure and
the Histogram Density Measure, which measure the sepa-
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Figure 1: Classified visualization approaches for high-
dimensional data. Unclassified visualizations look similar but
they would be b/w instead. The visualized data are implied by
a 3D dataset (left).

ration of classes. The Hough Space Measure detects clu-
sters in unclassified parallel coordinates, whereas the Si-
milarity Measure and the Overlap Measure detect clusters
in classified parallel coordinates. For unclassified RadViz,
the Cluster Density Measure is proposed to measure clu-
ster separation. Wilkinson et al. [Wea05] presented a graph-
theoretic scagnostics – based on the scagnostics from Tukey
et al. [TT85] – with nine graph-based metrics for scatter-
plots. They consist of measures for outliers, shape, trend,
density, and coherence. Later on, Bertini et al. [Ber11] sy-
stematized quality metrics. Such a classification supports
the comparison of different quality metrics.

A set of studies regarding perceptiveness and quality me-
trics are known: In [WW08], criteria are evaluated that
should be met in order to use scagnostic indices for vi-
sual data analysis. Sips et al. [Sea09] presented a quality
metrics-based study for scatterplots with ten study partici-
pants and six high-dimensional datasets. They investigated
human perception vs. two quality metrics and they got pro-
mising results. Tatu et al. [Tea10] presented a study for qua-
lity metrics for scatterplots with 18 study participants based
on the Wine dataset w.r.t. four quality metrics. A rather ge-
neral validation was done in [Bea13]. The authors evaluate
parameter settings for well memorable visualization techni-
ques. In [Sea12] and [Lew12] studies are presented where
Cluster Separation Metrics for 2D scatterplots are compa-
red with human judgments. The former evaluates the quali-
ty metrics that were presented by Sips et al. [Sea09] on 800
scatterplots of 75 real and synthetic datasets which are jud-
ged by the first two authors of the article. The result of this
qualitative data study is rather disappointing, since in about
50 % of the cases the metrics fail to match with the hu-
man judgments. The latter investigated seven cluster quali-
ty measures on 19 2D datasets, each with nine different clu-
ster versions that were judged by 12 non-expert participants
and 5 expert participants. They received partly promising
but also partly disappointing results. Both studies conclude
that the success of a quality metrics depend on the underly-
ing dataset. However, in our study we also consider quality
metrics for correlations and trends, the popular scagnostics
indices, further visualization approaches, and our study has
been conducted with a larger group of participants. Sedl-
mair et al. [Sea13] presented an empirical overview of ap-
titude for 2D/3D scatterplots for cluster separation based
on dimension reduction techniques. Different scenarios of
evaluation in information visualization have been analyzed

by Lam et al. [Lea12a] in order to provide suggestions for
well-designed evaluations. Our study design is inspired by
this work and it will be explained subsequently.

3 Study Design

This section explains and illustrates our basic study design.

3.1 Considered Data & Visualizations

We use five high-dimensional datasets to conduct the study:
Iris [Fis36], Yeast [HN96], Wine, Wdbc, and Cars [AN07],
which have different properties, as can be seen in Table 1.
We studied the visualization techniques scatterplots, par-
allel coordinates, and RadViz; classified and unclassified.
Scatterplots and parallel coordinates are the most frequent-
ly used bivariate visualization approaches. Hence, it was
logical to include them in our study. The RadViz is a mul-
tivariate (projective) projection approach. In the past, we
used them often to address, e.g., multi-class issues for our
collaboration partners from fluid dynamics. Thus, we were
interested in to disclose whether quality metrics might help
to guide us during a visual search in RadViz. Therefore,
we also included RadViz. In total, 7549 different visualiza-
tions resulted on which the quality metrics of Section 3.2
were applied.

Dataset Dimensions Records Classes
Iris 5 150 3
Yeast 10 1484 10
Wine 14 178 3
Wdbc 32 569 2
Cars 33 7755 52

Table 1: The datasets we considered in our study.

3.2 Considered Quality Metrics

In our study, we consider seven quality metrics which we
already know regarding their properties by some of our pre-
vious works, such as [Lea12b, Aea10]:
Class Density Measure (CDM) [Tea09]: measures the se-
paration between several classes. It was applied to classified
scatterplots and RadViz. The CDM(v) of the points p∈ v of
either a classified scatterplot or a RadViz v with M different
classes is given by

CDM(v) =
M−1

∑
k=1

M

∑
l=k+1

P

∑
i=1

||pi
k −pi

l ||.

Cluster Density Measure (ClDM) [Aea10]: measures the
quality of separated clusters within unclassified RadViz.
The ClDM(v) of an unclassified RadViz v is given by

ClDM(v) =
1
K

K

∑
k=1

K

∑
l=k+1

d2
k,l

rkrl
,

with K being the number of clusters, d2
k,l being the p2-norm

between two cluster centroids d2
k,l = ||ck,cl || and ri being

a cluster diameter. For details on how this parameter set is
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chosen please see [Aea10].
Hough Space Measure (HSM) [Tea09]: measures the se-
paration of clusters. It was applied to unclassified parallel
coordinates. The HSM is based on the observation that clu-
sters of separated lines form sharp density points within a
Hough Space. For unclassified parallel coordinates v, the
HSM(v) is given by

HSM(v) = 1− pv

w·h
,

with pv being the number of pixels in the Hough Space
Image Hv (resolution w×h) that fulfills Hv > median(Hv).
Overlap Measure (OM) [Tea09]: A measure that penali-
zes the overlap between different classes in classified par-
allel coordinates v. The OM(v) for M different classes and
a number of pixels P in the class-dependent Hough Space
Image Hv is given by

OM(v) =
M−1

∑
k=1

M

∑
l=k+1

P

∑
i=1

||Hv
i
k −Hv

i
l ||.

Scagnostics: The Scagnostics indicies [Wea05] are graph
attributes (except for the measure Monotonic). They are de-
signed for unclassified scatterplots. For this, the visualized
points are interpreted as nodes in a graph. In this study, we
consider the indicies Monotonic, Striated, and Stringy.
Monotonic (Mono): measures the trend of the scattered
points, based on the Pearson correlation coefficient by

Monotonic(v) =
( cov(xi,yi)

σ(xi)σ(yi)

)2
,

with cov(xi,yi) being the covariance of the components and
σ(ai) being the standard deviation.
Striated (Striat): measures if scattered points form straight
line patterns being space-coherent. The Striated(v) of the
scatterplot v is given by

Striated(v) =
1

|V(2)| ∑
v∈V(2)

|cos(∠(e(v,a),e(v,b)))|,

with e(v,a) being an edge in the Minimum Spanning Tree
(of the points) and V(2) being the set of nodes of degree 2.
Stringy (String): measures if thin shapes occur in scattered
points. The Stringy(v) of a scatterplot v is given by

Stringy(v) =
Φ(MST (v))
l(MST (v))

,

with Φ being the diameter and l being the shortest path of
the Minimum Spanning Tree.

3.3 Types of Conducted Studies

A high-quality study should fulfill two criteria: the result
should be free of missed values and the number of partici-
pants should be large enough to get significant results.
Thus, a study should be conducted under supervised condi-
tions, since it guarantees that multiple participations, biased
study data, or inappropriate participants are avoided. Unfor-
tunately, such lab studies are expensive, since staff, rooms,

and equipment are required. Therefore, lab studies are com-
monly conducted with a small number of participants. The
web enables an alternative to increase the number of parti-
cipants by conducting an online study. Of course, it cannot
be supervised in any situation. Thus, such a study is unsu-
pervised and bears the risk that, e.g., missed values occur,
but it also offers the chance to gain numerous participants.
In order to use the advantages of both worlds, we conduct
a lab study as well as an online study. Informally speaking,
our idea is to reveal study results from the lab study and to
confirm their statistical significance with the online study,
based on the assumption that a match of both study results
confirms the reliability of the lab study. Note that the inver-
se implication is not necessarily true. Formally speaking,
the reliability of the lab study can be falsified with the aid
of the online study.
Our lab study was conduced within a controlled environ-
ment with 22 participants, composed of undergraduate and
graduate students with knowledge of visualization. For our
online study, we informed potential participants via social
networks, such as Facebook. We gained 80 participants for
our online study.

3.4 Sequence of Tasks for a Participant

Form
Gives us background information to study participant,

such as age, sex, visual disorder, etc.

Information about visualization

technique and pattern of interest 

Info
Package 1

Information about visualization

technique and pattern of interest 

Info
Package m

Information about visualization

technique and pattern of interest 

Info
Package 2

Task 1 Task 2 Task n1

Task 1 Task 2 Task_n m

(Training Phase)

(Training Phase)

Task 1 Task 2 Task n2

(Training Phase)

Task 3

Task 3

Task 3

Figure 2: Study procedure for each study participant.
Figure 2 illustrates the guideline for a study participant.
Form: At the beginning, a study participant had to fill out
a form with reference data, such as sex, age, etc.
Package: Then, several work packages had to be comple-
ted. Within a package, we collect data to analyze the accor-
dance between a user-based ranking and a quality metric-
based ranking of the same visualizations. Each package has
the same design – explained below – merely the visualiza-
tion technique and quality metric are exchanged.
Package - Info: At first, a text informs the user about the
visualization technique that is considered and about the pat-
tern of interest that should be detected by the user. For in-
stance, one goal was: “Please find such visualizations which
show the best cluster separation”. Even though the values of
the underlying quality metric are known, the values will not
shown to the participant in order to get bias-free selection
results.
Package - Task: Our package is designed in a way that a
participant had to conduct the same task several times for
different datasets. As Figure 3 (top) shows, our task consists
of three steps:
• 1) Set of Visualizations: a set of k visualizations is pre-

sented to a study participant. We will not go into too
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much detail here, but an appropriate number k of visuali-
zations depends on the histogram, given over the quality
metric values w.r.t. a visualization technique. This k is
chosen in a way to get enough votes per visualization in
order to guarantee that the study results can be statisti-
cally analyzed.

• 2) Selection: the participant is asked to select a number
of the 25% (plus one) best visualizations from the pre-
sented ones w.r.t. the selection goal.

• 3) Sorting: the user sorts the selected visualizations in
order of perceived quality.

By using a random order of different tasks, they barely in-
fluence the respective results. We used an integrated trai-
ning phase in order to familiarize the participants: the first
task in a package is considered as training to become fami-
liar with the study tool. Thus, the results of all first tasks
(per package) are discarded.

Figure 3 shows four task scenarios that were captured from
different study participants. These scenarios are randomly
selected. Task Scenario 1 shows a task for selecting classi-
fied scatterplots that visualize best the class separation of
the Wine dataset being compared with the Class Density
Measure. The participant was able to select and rank two of
the three best plots compared to the measure. Nevertheless,
the best plot have been overlooked. Task Scenario 2 shows
a task for selecting unclassified scatterplots that visualize
best the correlation of the Wdbc dataset being compared
with the Monotonic measure. Here, the participant was ab-
le to select and rank the three best plots. Task Scenario 3
shows a task for selecting classified parallel coordinates
that visualize best the class separation of the Wdbc dataset
being compared with the Overlap measure. Our participant
was able to select and rank the four best plots. Task Sce-
nario 4 shows a task for selecting classified parallel coor-
dinates that visualize best the class separation of the Cars
dataset being compared with the Overlap measure. Our par-
ticipant was not able to select and rank the four best plots
compared to the Overlap measure.

In total, different quality metrics and visualization techni-
ques are considered by our packages. Five datasets are con-
sidered within the different tasks per package. The packa-
ges and tasks were presented in random order to minimize
bias caused by familiarization. Our study framework ena-
bles the investigation of a large spectrum of visualization
techniques, quality metrics, and datasets.

3.5 Conducting our Study in a Nutshell

Each participant completed 7 packages presented in ran-
dom order. A package is a unit of a visualization technique
and a quality metric. Based on Section 3.2 and 3.1 the fol-
lowing configurations were part of the study:

• Package 1: unclassified RadViz, Cluster Density
• Package 2: classified Scatterplot, Class Density
• Package 3: unclassified Scatterplots, Striated
• Package 4: unclassified Scatterplots, Monotonic
• Package 5: unclassified Scatterplots, Stringy

• Package 6: classified Parallel Coord., Overlap
• Package 7: unclassified Parallel Coord., Hough Space

Per package, 5 datasets (cf. Sec. 3.1) were considered, i.e.,
5 tasks had to be completed. In total, each participant con-
ducted 35 tasks shared over 7 packages either in the lab or
online study (cf. Sec. 3.3). This scheme allows to study the
human perception for 7 quality metrics and 3 visualization
techniques. In the following, we discuss decisions we made
during our study design.

3.6 Discussion of Our Study Design

We designed our study to examine whether quality metrics
resemble the human perception. Our design is based on the
hypothesis: the larger the accordance between the selected
visualizations of the quality metrics vs. our participants, the
more conform are the metrics with human perception.

In this respect, quality metrics are designed for the simp-
lest version and parameter set of a visualization technique.
We also used solely visualization techniques in the simplest
version in order to make the comparison fair. Moreover, a
visual search is an iterative process in practice where the
analyst deals with different visualization techniques, large
amounts of visualizations, and different interaction tech-
niques at the same time. Our presentation scheme mimics
such a real life situation. To minimize the bias and influence
of further psychological phenomena, we asked our partici-
pants to select the visualizations as quickly as possible.

What our study finally measures is the accordance of selec-
ted visualizations by both the quality metric and our parti-
cipants. A good match does not imply that a causal relation
between the properties of a quality metric and the percep-
tion of a human exists. It remains unclear whether such a
correlation is caused by further hidden variables, such as
cultural background, healthiness, form of the day, educati-
on, etc. However, this way we can measure which quality
metrics already tend to resemble the human perception.

4 Results

In this section, we evaluate the results of our study. Sec-
tion 4.1 illustrates our study characteristics, Section 4.2
provides an analysis on how good the lab study matches
with the online study. Section 4.3 describes the accordance
of the visualization selection based on the quality metrics
and our participants. This is the main result of our study.
In Section 4.4, we evaluate how stable the quality metrics’
behavior is according to their perception properties and
in Section 4.5, we evaluate the correlation between the
accordance and the stability. We close with an interpreta-
tion of our study results in Section 4.6. For the interested
reader, we provide additional material of our study under:
http://QM.dirk-lehmann.de/AddMaterialPDF.pdf.

4.1 Evaluation: Characteristics of our Study

Table 2 shows that 102 participants were involved.
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Figure 3: Task scenarios captured from our participants.

Study Males Females Total µage σage Votes
Lab 12 10 22 27.25 3.7 3432
Online 25 55 80 27 5.59 6880

Table 2: Composition of our participants for both studies.

Note that we extended related studies, such as [Tea09,
Sea09]. For this, a visualization data base with a total of
7549 visualizations has been used, which is the sum of vi-
sualizations obtained from the datasets Iris, Yeast, Wine,
Wdbc, and Cars. Even though the number of participants
was large, in some cases there were not enough votes for
analysis purposes. Additionally, about 15 % of the parti-
cipants stopped the online study before its end. Since the
packages were randomly presented, this behavior also leads
to a lack of votes in some cases. Thus, we only considered
study results for which we got enough votes in order to al-
low a statistical analysis.

4.2 Match: Lab vs. Online Study

The Chi-square test for similarity [Ken70] enables to mea-
sure how good two (or more) random variables fit to the
same distribution behavior. We use it to investigate whether
our lab study results match with the results of the online
study:

How good both studies match, is stated in Figure 4, sepa-
rated for each dataset and provided by the Chi test. The

Class Density Cluster DensityMonotonic StringyOverlap Hough Space Striated

Wine

Wdbc

Iris

Yeast

Cars

Wine

Wdbc

Iris

Yeast

Cars

Wine

Wdbc

Iris

Yeast

Cars

Wine

Wdbc

Iris

Yeast

Cars

Wine

Wdbc

Iris

Yeast

Cars

Wine

Wdbc

Iris

Yeast

Cars

1/1

Chi Square Test detects no match between voting distribution in in lab vs. online study regarding this dataset
Chi Square Test detects a match between voting distribution in lab vs. online study regarding this dataset

Chi Square Test not possible due to sparse data between lab vs. online study regarding this dataset

3/5 2/2 3/3 1/2 3/3 2/2

Significance level of Chi Square Test is

Wine

Wdbc

Iris

Yeast

Cars

Figure 4: Match between lab and online study.

orange boxes are related to a match of the distribution of
votings between the lab and the online study and regarding
a certain quality measures. It is illustrated by a light orange
box if the test failed, i.e., there is no match between both
studies in this case. The probability that these results are
wrong is given by the significance level α = 5%. Since a
sparse data situation, the preconditions to conduct such a
test was not for each dataset given, which is emphasized by
a white colored box. For instance, for five datasets regar-
ding the OM a test was able. For three datasets the test was
positive regarding a match between both studies, and thus a
ratio 3 out of 5 (3/5) follows.
From this it follows that the quality metrics CDM, Mono,
String, HSM, and Striat match for both studies. The selec-
tion results of the measures OM and ClDM do not com-
pletely match. In addition, only one dataset was available
to check the quality of the match between the studies for
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the CDM. Therefore, the match for the CDM cannot be
confirmed due to the sparse data situation. For the remai-
ning quality metrics, a appropriate number of results from
2,3,4 or even 5 datasets were available in order to check
the match between the studies. In total, our analysis reveals
that the subsequent evaluation-based statements apply rat-
her for the quality metrics Mono, String, Striat, and HSM.
For these measures, the statements are more reliable than
for the remaining measures.

4.3 Accordance between the Visualization
Selection of the Quality Metrics and our
Participants

The accordance A(QM,DS) of a quality metric QM and
a dataset DS is a statistical measure, which is given by
the number nmatch of the event “vote of a study participant
and a QM is equal” and the total number ntotal of votes
regarding the QM and the DS: A(QM,DS) = nmatch/ntotal .
The results for the accordance are given in Figure 5: The
orange bar charts illustrate the accordance per dataset for
each of the considered quality metrics and separated for the
lab study and the online study. A total accordance tA(QM)
of a quality metric QM is given by the mean value

tA(QM) =
1
n

n

∑
i=1

A(QM,DSi),

with n being the number of datasets. Figure 5 (top left)
shows the values of the total accordance per quality me-
tric. Please note that the total accordance gives a condensed
accordance view, which gives us an entry point for the stu-
dy interpretation: A large (total) accordance value (close to
one) means that the votes of a participant perfectly match
with the votes of a quality metric, i.e., the related quality
metric seems to be strongly perceptive. If the quality me-
tric would just randomly vote, the related accordance value
would be 0.25 (or below). Hence, the larger the abs. dif-
ference between the accordance value and 0.25, the more
perceptual a quality metric is.

It follows that none of the investigated measures are “stron-
gly perceptive”, since the total accordance of them is much
smaller than one. But trends can be seen: the metrics Mo-
no, String, Striat, and HSM often work similar as the par-
ticipant. They can be classified as “perceptive” with a to-
tal accordance larger than 0.50. The metrics OM and the
ClDM can be classified as “weakly perceptive” with a total
accordance larger than 0.40. In contrast, the CDM appears
as “not perceptive”.

4.4 Volatility of Visualization Selection for
Quality Metrics vs. our Participants

A Pearson correlation [Ken70] is a statistical linear re-
gression measure to measure the binding of variables w.r.t.
a certain model, here a linear function. A large value re-
lates to a strong linear binding between the visualization
rankings from the quality metric and the participants. The
Pearson correlation is related to a certain model: If the value

is large, the result fit to a linear model. Otherwise, it pos-
sibly fits to another model. Thus, if this value varies over
different datasets, the results likely fits to various models.
A good quality metric should fit to the same model, even if
this model is hidden. Hence, it is logical that a good quality
metric ought to have a low variance w.r.t. regression values
over different data. We denote the standard deviation of the
regression value over different dataset as volatility.

Figure 6 provides the volatility results of our study: (top
left) shows in orange bar charts the values of volatility for
each quality metric. The remaining bar charts illustrate the
Pearson correlation per dataset for each of the considered
quality metrics, separated for the lab and the online stu-
dy. Note that the volatility (top left) gives us an entry point
for the study interpretation: If this value is larger than 0.3,
we label the measure as “volatile”. It can be seen that the
ClDM and the CDM are volatile. For instance, the CDM
turns out as being volatile if it is applied to different data-
sets, e.g., it shows promising results for the Wine dataset,
but disapointing for the Yeast dataset. Interestingly, we get
similar regression results for CDM in the Wine dataset as
Tatu et al. [Tea09], which confirm the results of their study.
The metrics OM, Mono, String, HSM, and Striat depict bet-
ter results. Especially the measures String and HSM show a
stable behavior with a volatility smaller than 0.24. The sta-
blest behavior is given by OM with a volatility smaller than
0.2.

4.5 Correlation between Accordance and
Volatility

Figure 7 shows a comparison between the total accordance
(cf. Fig. 5) and the volatility (cf. Fig. 6) as a scatterplot. On
the left, the comparison is based on the results for both the
lab and the online study. There is only a weak correlation
verifiably, with a correlation coefficient ρ = −0.201. Ho-
wever, we already know from the abovementioned evalua-
tions that the results for the measures CDM and ClDM are
inconsistent, mainly due to a sparse data situation. In addi-
tion, both measures can be qualitatively considered as to be
outliers in Figure 7 (left). By excluding these two measures,
we get a very high positive correlation between the accor-
dance and the volatility for the remaining measures with
ρ = 0.903. This is a bit of surprising result, since the accor-
dance grows with the volatility for this subset of measures.
On the right in Figure 7, the comparison is provided sepa-
rated into the lab study (top) and the online study (down).
The variables barely correlate, with ρ = −0.08 (lab) and
ρ = 0.165 (online). By disregarding again the CDM and
ClDM, there is only a weak positive correlation ρ = 0.330
(lab) and ρ = 0.367 (online). In total, the accordance of the
considered quality metrics does not generally relate to the
volatility, but there are correlating subsets of measures pos-
sible.

4.6 Discussion

Here, we discuss our study results and the helpfulness of
using quality metrics in practice. By considering the men-
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Figure 5: Accordance between the votes of the quality metrics and our participants.

1.00

0.99 0.52

Lab Online

0.45 0.40 0.10 0.55

Monotonic

Iris WdbcWine Cars Iris Wdbc

0.30 0.72

Lab Online

0.65 0.52 0.80

Striated

Iris WdbcWine Cars WdbcYeast

0.94

Wine

0.22

0.52

Lab Online

0.05 0.06 0.37

Overlap

WdbcWine Cars WdbcYeast

0.48 0.44 0.46

WineYeast

0.38

Cars

0.82 0.57

Lab Online

0.28 0.42 0.00

Hough Space

Iris WdbcWine Cars WdbcYeast

0.51 0.64

WineYeast

0.50

0.79 0.70

Lab Online

0.12 0.05

Class Density

Iris WdbcWine CarsYeast

0.44

Wine

0.54

Lab Online

0.45 0.22

Cluster Density

Cars WdbcYeast

0.98

Yeast

0.34

0.24 0.260.30 0.28 0.20 0.33

Class

Density

0.18

0.33 0.48

Lab Online

0.72 0.72 0.94 0.63

Stringy

Iris WdbcWine Cars Iris WdbcYeast

0.88

Wine

0.86

0.25

1.00

0.25

1.00

0.25

1.00

0.25

1.00

0.25

1.00

0.25

0.30

1.00

0.25

Cluster

Density
Mono-

tonic

StringyOverlap Hough

Space

Striated

Figure 6: Volatility and regression analysis regarding the votes of the quality metrics and our participants.
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Figure 7: Accordance vs. Volatility

tioned criteria match of both studies, accordance, and vola-
tility, we are able to identify such quality metrics that are
best w.r.t. all criteria and have formally the best relation to
human perception. These metrics are: Monotonic, Strin-
gy, Striated, and Hough Space Measure. These measures
might be used whenever human perception needs to be mi-
micked. Since the inverse statement is not true, it does not
mean that the remaining measures are useless, but for them
our study is not able to statistically prove their relation to
the human perception.

For the interested reader, a detailed analysis of the seven
quality metrics follows: In order to detect correlations in
unclassified plots or RadViz, the selection results regarding
the Mono between participants and quality metrics substan-
tially match. The detection of thin shapes and scattered li-
nes in unclassified plots also matches well between metrics

and participants. Thus, we recommend Mono, String, and
Striat for practical use. The ClDM for detecting separated
clusters in plots or RadViz seems to be volatile and cannot
be recommended for practical use. The Hough Space mea-
sure for detecting cluster separation in unclassified paral-
lel coordinates delivered promising results. Participants and
metric made the same selection decisions w.r.t. best views.
Thus, this measure is recommended to support the user in
practice. The accordance of the CDM is indeed larger than
for the OM, but the volatility is larger for the CDM and the
situation of available data is worse for it. Thus, the OM is
to be preferred for use in practice in order to detect a class
separation in classified parallel coordinates.

An interesting observation is that the more classes are pre-
sented in a view the less the participants were able to re-
cognize any reasonable patterns therein, and the less ac-
cordance could be observed for the selected views between
metric and participant. Especially the selection of class se-
paration in parallel coordinates of the Yeast and Cars data-
set (by CDM and OM) with more than 10 classes was near-
ly impossible for our participants. However, for few clas-
ses ( Iris, Wine) the accordance between metrics and par-
ticipants was convincing. Apparently, the participants are
perceptively (and maybe cognitively) overwhelmed if the
number of classes is larger than nine. On the other hand,
quality metrics are still able to select views showing a class
separation – not in a perceptive sense, but in an analytical
sense. Thus, our study illustrates that quality metrics might
support the selection and filtering of views for those cases
where human perception fails.

Can visual measures help us to filter visualizations of inte-
rest? The answer is: yes, for two reasons:
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Early Reject: The quality metrics Mono, String, Striat, and
HSM can be applied to early reject at least 75 % of bad
unclassified plots or parallel coordinates related to human
perception, if patterns such as correlations, skinny shapes,
straight lines, or separated clusters are of interest. Since it
was necessary to reveal a sufficient number of votes, we as-
ked our participants to select the best 25 % w.r.t. a metric.
Thus, we can only be sure that 75 % of the worst views can
be rejected. Since our study framework scales well, it can
be used as template for further studies.
Overcome Perception Limitations: Participants reach the
limit of their perception if a visualization becomes com-
plex. Our study illustrates this for classified visualization
techniques. Quality metrics might help to overcome such a
limitation, since they allow the selection of views that show
relevant information, even though they might be too com-
plex to be found by a participant.
Perceptivity of Quality Measure vs. the Data: Beyond
the answer which quality metric is perceptive, another ob-
servation of our study is relevant. Figure 5 shows an uneven
pattern regarding the rate of accordance w.r.t. the different
data. Similar observations were already given in [Lew12]
and [Sea12]. Apparently, the perceptivity of a quality me-
tric depends on the chosen dataset. This is an unexpected
and curious behavior. Its reason is unknown. Our impressi-
on is, that there is a relation of certain data structures to the
users’ perceptivity. This is an interesting observation, ho-
wever, we leave this issue for further studies in the future.
Further Studies and Research Options: We learned from
our study that further studies require to treat and to investi-
gate why the perceptivity depends on the underlying data.
For this, a vast amount of data should be treated within a
study to clarify which sort of structures relate to the user’s
perception. Based on such a study, novel perception-based
quality metrics might be developed. We also discovered a
lack of studies regarding multivariate projection techniques.
Are there already quality metrics available that detect non-
linear embeddings and trends similar to the user’s percep-
tion? Also the stability of quality metrics w.r.t. noise has
not been systematically investigated yet. How sensitive is a
quality metric if the data is slightly disturbed? How strong
is the impact regarding the perceptivity of this quality me-
tric? In addition, our study reveals that a set of quality me-
trics for unclassified visualization techniques is available
being related to human perception. For classified visualiza-
tion techniques, quality metrics are missed being assuredly
related to human perception. There is a gap of such me-
trics. Thus, in the future it is advisable to focus more on the
design of quality metrics for classified and complex visua-
lization techniques.
However, from experience we recommend to conduct onli-
ne studies. In comparison to the traditional laboratory study
set up, online studies lead to a large number of participants,
are budget-friendly, and they can run over long time peri-
ods.

5 Conclusion

We presented a study to depict relations between quality
metrics and human perception. There are two aspects that
we learned about quality metrics within our study. First,
the investigated scagnostics indices were the best regarding
their perceptivity properties. Second, there is a strong re-
lation between perceptivity and the underlying data from
which a couple of questions arise, which we will treat in
the future.
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