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Abstract

Parallel coordinates and scatterplot matrices are
widely used to visualize multi-dimensional data
sets. But these visualization techniques are in-
suf�cient when the number of dimensions grows.
To solve this problem, different approaches to pre-
select the best views or dimensions have been pro-
posed in the last years. However, there are still sev-
eral shortcomings to these methods. In this paper
we present three new methods to explore multivari-
ate data sets: a parallel coordinates matrix, in anal-
ogy to the well-known scatterplot matrix, a class-
based scatterplot matrix that aims at �nding good
projections for each class pair, and an importance
aware algorithm to sort the dimensions of scatter-
plot and parallel coordinates matrices.

1 Introduction

With the exponentially increasing amount of ac-
quired multivariate data, several multi-dimensional
visualization techniques have been proposed dur-
ing the last decades [10]. Based on the fact
that human perception cannot deal well with more
than three continuous dimensions simultaneously,
such techniques usually project the data in low-
dimensional embeddings and combine these repre-
sentations in a single plot or present them to the
user in an interactive way. Some well-known exam-
ples of multi-dimensional visualization techniques
are glyph techniques [17], parallel coordinates [9],
scatterplot matrices [7] and pixel level visualiza-
tions [11]. But even these techniques do not scale
well to high-dimensional data sets. In this work we
focus on parallel coordinates plots (PCP) and scat-
terplot matrices (SPLOM), and propose extensions
to these well-known visualization techniques.

Scatterplots are one of the oldest and widely used
visualization methods.We can de�ne them as graphs

where the values of two variables for a sample in a
data set are used to plot a point in 2-dimensional
space, resulting in a scattering of points. Scatter-
plots are very useful for visually determining the
correlation between two variables. A SPLOM is
a symmetric matrix of adjacent scatterplots and al-
lows the user to analyze the diverse dimensions at
once. If there aren variables, the SPLOM has di-
mensionn � n and the element at thei -th row and
j -th column is a scatterplot of thei -th andj -th vari-
able. Related to this kind of visualization, we pro-
pose two extensions: a class based scatterplot ma-
trix and an importance oriented reordering of the
dimensions of the matrix. The proposal of theclass
based SPLOM(C-SPLOM) is to support the visual
analysis of labeled (classi�ed) data sets. In such
data sets, the analyst often searches for projections
where distinct clusters can be observed. Previous
approaches aim at �nding good views of a data set
considering all classes at once. The problem with
such approaches is that this global optimization
may ignore views that separate two classes well, be-
cause of the distribution of the remaining classes.
To deal with this, our C-SPLOM presents the best
projection for each class pair, based on a ranking in-
dex. This class based visualization method is useful
to analyze labeled data sets with a large number of
variables that cannot be well visualized using tradi-
tional SPLOMs.

Another popular visualization technique are par-
allel coordinates plots (PCPs) [9]. In such plots,
each sample of anN -dimensional data set is rep-
resented by a polyline that intersectsN vertical
axes (dimensions). The intersection point repre-
sents its value in the respective dimension. Similar
to the scatterplot matrices the parallel coordinates
plots, do not scale well when the number of dimen-
sions grows, as important dimensional relationships
might not be visualized. Addressing this shortcom-
ing, we propose an importance orientedparallel co-
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ordinates matrix(PCM). Unlike the SPLOM the
PCM is not symmetric, each rowi of the matrix
represents the relation of one dimensiond to the
others of the data set, ordered by the inherent in-
formation value. Additionally, we propose a qual-
ity aware dimension reordering framework for visu-
alization matrices, like SPLOMs, C-SPLOMs and
PCMs, to improve the visual analysis task of high-
dimensional data sets.

2 Related Work

SPLOM and PCP are two of the most popular multi-
dimensional visualization techniques and are imple-
mented in diverse popular visualization tools as for
example in the XmdvTool [17] and GGobi [14].

2.1 Scatterplot Matrix

The SPLOM was �rst published by John Hartigan
[7] and later explored and extended in diverse visual
exploration tools. As aforementioned, SPLOMs
lose their effectiveness when the number of vari-
ables is large; to deal with this problem different
approaches have been proposed: The grand tour
[3] is a dynamic tool that presents a continuous se-
quence of lower dimensional (e.g. 2-dimensional)
point scatters. However, an exhaustive exploration
of a high-dimensional data set requires prohibitive
time. Projection pursuit [6, 8] was proposed as an
alternative to an exhaustive visual search, a statis-
tical technique to search for low dimensional (one
or two-dimensional) projections that expose inter-
esting structures of the high dimensional data set.
Later on, different projection pursuit indices [5, 8]
and a combination of the grand tour and projec-
tion pursuit [4] as a visual exploration system have
been proposed. In a similar direction, the Scagnos-
tics method [16, 18] was proposed.In this tech-
nique, different scagnostics indices (e.g. Convex-
ity, Skinny, etc.) are computed and presented as
a scatterplot matrix of the indices themselves (the
scagnostics SPLOM). Such scagnostic indices can
be used to reveal structures of the data set in the
form of trends, hypersurfaces, clusters, or anoma-
lies in the data set.

In our method we make use of projection pur-
suit like measures in a twofold way, to select
information-bearing projections for the C-SPLOM
and PCM, and to perform dimension reordering.

Considering classi�ed datasets, a class consistency
visualization algorithm has been proposed by [12].
Similar to our class based matrix, the class consis-
tency method proposes measures to rank lower di-
mension representations. The method proposed in
[12] �lters the best scatterplots based on their rank-
ing values and present them in an ordinary scatter-
plot matrix. One problem of this method is that the
SPLOM does not scale well for high-dimensional
data sets and even if a zoom option is available,
the overall visualization of the SPLOM is preju-
diced. Another problem happens when all classes
are analyzed together to rank the projections, in
this case, projections that separate two classes very
good might receive a bad ranking because of the
distribution of the remaining classes. Our method
reduces the matrix size to the number of classes of
the data set and presents to the user the best projec-
tions for each class pair individually.

2.2 Parallel Coordinates

Another very popular multivariate visualization
technique are parallel coordinates [9]. In a paral-
lel coordinate plot each dimension appears just once
and the relation with other dimensions may be dif�-
cult to pinpoint depending on the distance between
them in the plot. Diverse linking and brushing al-
gorithms [17, 14] together with transparency lev-
els have been proposed to help visualizing these re-
lations. However, they do not solve the problem
when one dimension shares important correlations
with more than its two neighboring dimensions in
the visualization. Opposingly, we propose a paral-
lel coordinate matrix, where there is the possibility
to plot all possible 3-dimensional combinations for
each dimension. In this matrix we have for each di-
mensiond up to(n � 1)=2 3D parallel plots, where
d is the central dimension, theoretically revealing
all important relations for this dimension. An im-
portant issue for parallel coordinates is how to or-
der the dimensions in the plot. Different proposals
to solve this problem focus on ordering the dimen-
sions by similarity [2, 19], and a recent work [15]
proposes a sorting of the dimensions based on the
quality of the plots. In this second case, a rank func-
tion evaluates each 2D dimensional parallel plot and
the result is used to determine the order of the di-
mensions in the �nal plot. Our PCM capitalizes
on this second approach to order the 3D individ-
ual plots. For each dimension we sort its respective



3D plots using a ranking function; the plots with a
higher ranking are presented �rst and the ones with
a lesser amount of useful information are presented
last.

3 Visualization Matrices

In the following subsections we describe our infor-
mation bearing visualization matrices in more de-
tail and de�ne the measures we use to rank the
low-dimensional projections. We then discuss re-
ordering of scatterplot matrices using such quality
measures and how it can help to visualize high-
dimensional data sets.

3.1 Parallel Coordinates Matrix

Parallel coordinates plots [9] are one of the tech-
niques which allow to visualize an arbitrary num-
ber of dimensions of a data set within the same
plot. This makes them very attractive for high-
dimensional data sets but comes at a cost. The
amount of information bearing content is very sen-
sitive to the ordering of dimensions [2]. In addition,
every dimension can be paired with only two other
dimensions. Therefore important relations to a third
or fourth dimension might be missed.

Our approach aims at presenting all those rela-
tions in a single matrix, where each entry shows
the relationship between only two dimensions. This
way alln2 possible combinations of dimensions are
represented and no information is lost. The problem
with such an approach is the overstraining of the
user as he would have to check every single visual-
ization for possible information content. It is there-
fore important to sort the visualizations inter- as
well as intradimensionally, so that important visu-
alizations are spatially close together and at known
positions in the matrix. We found that such a matrix
is most legible if three constraints are ful�lled:

1. Every row should contain one main dimen-
sion, which appears in every visualization in
this row. A label is assigned at the left of the
row for faster indexing.

2. The visualizations in each row should be
sorted in descending order according to their
inherent information value. The best should be
positioned on the left, the worst on the right.

3. The dimensions itself, i.e. the rows of the
matrix, should be rearranged so that the most

Figure 1: Structural overview of the PCM. Each
row has one main dimension appearing in the mid-
dle of each 3D plot and as a label on the left for a
better overview. The rows are ordered according to
the overall importance of the main dimension in as-
cending order. The visualizations in each row are
again odered according to their relative importance.

valuable rows are on top, while dimensions
with lesser information value are closer to the
bottom of the matrix.

This way, only looking at then � p submatrix, start-
ing at index(0; 0) reveals the most valuable rela-
tionships, i.e. visualizations to the user. An example
of this concept is given in Figure 1.

In a �rst step, all n2 2D visualizations are cre-
ated. A quality measurement is applied to charac-
terize the possible information value of each visu-
alization. Most approaches in the literature aim at
�nding the best ordering of alln dimensions glob-
ally, or choosing a subset of them.

Only recently an approach has been presented,
which rates every PCP consisting of only two di-
mensions and combines them in a second step to
the complete visualization [15].

We exemplarily make use of theiroverlap mea-
sure for our test data, which measures the simi-
larity between the different classes of the data set
in Hough space. Visualizations with distinctive
classes therefore receive a high quality value and
visualizations with very similar classes receive a
low value. Other measurements, class and non-class
based, would be possible as well and can be easily
included in our framework, like [2].

We initialize the matrix so that each row of the
matrix has one main dimension, e.g. each visual-
ization in row 1 contains the dimension 1, each in
row 2 the dimension 2 and so on. We then sort the
visualizations intradimensionally, i.e. per row. As
each visualization is associated with a quality value,



we can easily apply a simple standard sorting algo-
rithm. We always combine two 2D visualizations
to a 3D visualization, as both share the same main
dimension, which is then positioned in the middle.

In a last step we reorder the dimensions itself,
i.e. the rows of the matrix. We tested different cri-
teria, like summation of all quality values in each
row or linear and Gaussian falloffs, increasing the
importance of the �rst visualizations in each row,
while decreasing the importance of the lesser valued
ones, and found that the linear falloff gives good re-
sults for the PCM. More details and a more general
description for dimension reordering visualization
matrices is given in Section 3.3. Therefore the qual-
ity value of thej -th dimension is computed by

D j =
nX

i

(n � i )
n

Q(p( j;i ) ) ; (1)

wheren is the number of dimensions andQ(p( j;i ) )
is the quality value for thei -th visualization in the
j -th row of the matrix.

3.1.1 Evaluation and Results

We used theWisconsin Diagnostic Breast Cancer
(WDBC) as well as others from the UCI data base to
test the usefulness of our PCM. The WDBC data set
consists of 569 samples with 32 real-valued dimen-
sions each [13]. The task is to �nd the best dimen-
sions separating the malign and benign cells in the
data set. We created our PCM for this data set us-
ing theoverlap measurefrom [15]. Other measure-
ments could be used as well, depending on the task.
Figure 2 shows the complete PCM with the best
and worst ranked visualizations enlarged. Visual-
izations with higher information value are found in
the top left of the matrix, as desired, while the visu-
alizations on the bottom right are hardly of any use.
Looking only at the best parallel coordinates plots,
like other approaches did [19, 15], one might miss
important information. E.g. dimension 22 (radius
(worst)) in combination with dimension 9 (concave
points (mean)), 29 (concave points(worst)), 25 (area
(worst)) and 5 (area (mean)) all separate the ma-
lign and benign cells comparingly well, but in usual
parallel coordinate visualizations only two combi-
nations could be displayed in one visualization.

One could argue that SPLOMs ful�ll a similar
task as PCMs, but there are major differences be-
tween these two approaches. First, SPLOMS are

Figure 2: Results of the PCM for the WDBC data
set. Malign nuclei are colored black while healthy
nuclei are red. Visualizations with only few overlap
are preferred, so the difference between malign and
benign cells becomes more clear, and can be found
in the top left of the matrix. The worse visualiza-
tions in the bottom right hardly convey any useful
information.

not sorted. This limits their usefulness for data sets
of up to a dozen dimensions only, otherwise ex-
haustively investigating each plot is overstraining
for a user. Even when sorting the dimensions be-
forehand, as proposed in 3.3, additional informa-
tion as color encoding or ranking values are needed
to guide the visual search. Using PCMs, looking at
then � p submatrix, starting at index(0; 0) always
reveals the most valuable relationships, i.e. visual-
izations to the user, no matter how high the dimen-
sionality of the data set is. Of course the choice of
Parallel Coordinates could also be exchanged with
Scatterplots, which one is more bene�cial depends
on the preference of the user.

3.2 Class-Based Scatterplot Matrix

A common task in visual analytics is to search
for projections of high-dimensional data that shows
well de�ned clusters. The same occurs when
class information is available; �nding the projec-



tions or dimensions that can well separate the dis-
tinct classes is a desired outcome. To serve this
purpose, we introduce a new visualization matrix
calledclass-based scatterplot matrix(C-SPLOM).
We assume that each point in the high-dimensional
space has a class labelc. Diverse data sets have a
clear de�nition of classes, but this assumption does
not limit the use of this technique to these data sets,
as class labels can be assigned through an automatic
clustering algorithm.

Similar to the well known SPLOM, the class-
based version is also a matrix of pairwise scatter-
plots s(a; b), with data dimensionsa and b. The
difference is that the classes are listed on the rows
and columns instead of the original dimensions. If
there arem classes in a data set, the C-SPLOM has
dimensionsm � m and the element at thei -th row
andj -th column is the scatterplot of thek-th andh-
th variable. The projection axesk andh are chosen
in a way to maximize the information content for
the pairwise relation of thei -th andj -th classes.

An important issue of the C-SPLOM is to choose
an appropriated analysis algorithm to compute the
quality indexQ(s(a; b)) of the scatterplots. Dif-
ferent algorithms can be used to this end [12, 15]
as long as they consider the pairwise relationships
between classes. The problem in considering all
classes at once, as proposed in [12, 15], is that
the global optimization may ignore views that sep-
arate two classes well, because of the distribution
of the remaining classes.The Figure 3 shows exam-
ples of scatterplots generated from theOlivesdata
set. (Section3.2.1). The �rst scatterplots(4; 5)
has the highest rankQ(s(4; 5)) = 1 considering
all classes. However the scatterplots(2; 8) with
rank Q(s(2; 8)) = 0 :44 presents a better separa-
tion of 3-th and4-th classes presented in the data set
(theSouth-Apuliaregion in red andSicily region in
green, respectively), as can be seen in the third plot.
This outcome is only possible if the adopted mea-
sure analyzes the pairwise relationships between
classes instead of a global measure. The resulting
quality indexQ is then used to rank the scatterplots,
and the best scatterplot is selected for the respective
class pair.

We tested our C-SPLOM with two similar algo-
rithms to measure the quality of scatterplots with
class information. The �rst algorithm is theclass
densitymethod proposed in [15]. It assigns high
values to plots with few overlap between the classes

Figure 3: The �rst scatterplot is the one with the
highest rankQ = 1 , when considering all classes,
however the second one with rankQ = 0 :44
presents a better separation of the3-th and 4-th
classes (red and green), as can be seen in the third
plot.

and dense clusters. We adopted their algorithm with
the difference that only one class pair is considered
per time. To rank projections considering a speci�c
class pair, the algorithm is applied only to the data
of the respective classes and the best ranked scatter-
plot will represent this class pair in the C-SPLOM.
The second measure, as the �rst one, presents high
values for plots with well separate clusters and in-
stead of dense clusters, this measure has a bias to-
wards larger distances between the clusters. The
distance at a pixelp is de�ned asr , where r is
the radius of the enclosing sphere of thek� nearest
neighbors ofp:

r = max i 2 N p jj x � x i jj ; (2)

as de�ned in [15]. Both measures then compute
the sum of the mutual differences of these images.
To decide which algorithm is the best one depends
strongly on the user task. Figure 4 shows an exam-
ple of the differences between the C-SPLOMs for
theWinedata set (Section3.2.1), using these two ap-
proaches.

Note that for the1-st and2-nd class (in black
and red respectively) the class density presents a
scatterplot with more dense clusters as best result,
while the class distance measure presents a scatter-
plot where the distance between the center of the
clusters is larger. The same happens for the1-st and
3-rd class (in black and green respectively), and for
the2-nd and3-rd the same scatterplot is chosen.

3.2.1 Evaluation and Results

To evaluate our C-SPLOM, we tested it on diverse
real data sets from the UCI repository [1] with la-
beled information. The �rst presented data set is



Figure 4: The resulting C-SPLOM for the class
density (left) and class distance quality measures
(right).

theWinedata set, a classi�ed data set with 178 in-
stances and 13 attributes describing chemical prop-
erties of Italian wines derived from three different
cultivars. The user task here is to �nd the projec-
tions (dimensions) that separate these classes well.
Figure 5 shows the comparison of the C-SPLOM
(upper-right) and its counterpart SPLOM (bottom-
left). The C-SPLOM was computed by means of
the distance measuredescribed previously. An-
other data set we used to evaluate the C-SPLOM
is theOlives[20] data set. With 572 olive oil sam-
ples from nine different regions of Italy; for each
sample the normalized concentrations of eight fatty
acids are given. Figure 3 show two scatterplots
of this data set, the �rst one with the4-th and
5-th dimensions (concentrations of the oleic and
linoleic acids), and the second with the2-nd and
8-th dimensions (concentrations of the palmitoleic
and eicosenoic acids).

3.3 Dimension Reordering

Often, n-dimensional datasets are represent as a
series of 2D scatterplots. Such scatterplots are
commonly arranged in a SPLOM and usually, the
dimensions are arranged as provided by the data
set. Dimension reordering methods for SPLOM
based on the similarity between the projections have
been proposed [18]. But noquality-aware sort-
ing methods have been presented.. This motivated
us to adopt aquality-aware sortingconcept and to
start investigating the advantages of such an ap-
proach. Note that the concept of dimension reorder-
ing can be applied to any matrix-based visualiza-
tion, e.g. in Section 3.1 we also apply a dimen-
sion reordering for our PCM, but for the ease of
understanding we will use SPLOMs in this chapter.

Figure 5: Results of the C-SPLOM for the Wine
data set. Visualizations with only few overlap are
preferred, so the difference between the wine cul-
tivars becomes clearer. The best visualizations for
each class pair are shown in the C-SPLOM.

The pipeline of our framework for quality-aware re-
ordered SPLOMs (D-SPLOM) is shown in Figure 6
and explained in the following. As a pre-process for
the reordering, we initially apply a quality-measure
Q(s( a;b ) ) to each scatterplots( a;b ) . This quality-
measure ought to be a scalar one, so that it rates
the scatterplot unambiguously with a single num-
ber. Apart from that, it could be any useful measure
[18, 12, 15]. Furthermore, we need this quality-
measure to estimate the quality of each dimension
itself. Once we haven � 1 scatterplots for each
dimension in an-dimensional dataset, we consider
n � 1 quality measures (one per plot) to compute
the dimension overall quality-measure.

For each dimensiond, we compute a dimension-
measure as the base for reordering. A dimension-
measureQd is a scalar functionQd : Rn � 1 ! R
over all quality-measuresQ(s( a;b ) ) of a dimen-
sion d: D d = Q(s( d;i ) ), wherei 6= d and i 2
[1; : : : ; n]. It appraises the quality-aware impact
over all scatterplots, which contains the dimension
d. There are exactlyn dimension-measures for a
n-dimensional dataset. Different functions could
be used for computingD d , as long as it is guar-
anteed that the measure-values are comparable to
each other, as themean, aPCAor thevarianceover



pre-computed quality-measures. We decided to use
the sum over all quality-measures as dimension-
measure for this paper, as a proof of concept:

D d =
nX

i =1 ; i 6= d

Q( s ( d;i ) ) : (3)

This measure produces the same partial order be-
tween the dimension-measures as the mean, with
the advantage that it is easier and faster to compute.
In this last step, we make use of the computed in-
formation to reorder an � n SPLOM. Because such
a SPLOM is symmetric, we use the upper triangu-
lar matrix for display. First, we allocate to each di-
mension its quality-measure valueD d . We sort all
quality-measure/dimension pairs(D d ; d) by means
of a simple partial order (� ) with respect to the
quality-measureD d , which gives us a dimension-
rankingr = ( sort f (D d ; d)g; � ). The dimension
r [0]:d from rankingr describes thebestdimension
andr [n]:d theworstone.

We map a dimensiond to its position in the
rankingr and, depending on that mapping, we re-
order the scatterplots in the SPLOM and get the
dimension-based reordered SPLOM (D-SPLOM),
as can be seen in Figure 6.

Figure 6: Overview of the dimension reordering
Process

3.3.1 Evaluation and Results

To evaluate our concept, we tested it on real
class-based and non-class-based multi-dimensional
datasets. For classi�ed data, we applied theClass
Density Measure(CDM) [15] as a quality-measure
to theOlivesdataset [20], see Section 3.2.1 for a de-
scription. The CDM assigns higher values to scat-
terplots with a better separation between the classes.
The result of the reordering is shown in Figure
7. For non-classi�ed data we applied theRotating
Variance Measure(RVM) [15] as quality-measure
to the Parkinson-dataset. This set has 13 dimen-
sions, no classes and 197 items. The RVM rates the

linear and non-linear correlation within the scatter-
plots with respect to its two dimensions. The result
is shown in Figure 8.

Figure 7: Evaluation on class-basedOliveoil data
set using the CDM: The ordinary SPLOM (top), the
resulting D-SPLOM (bottom)

In Figure 7 and 8, relevant scatterplots are col-
ored more red than non-relevant. It is easy to see
that both types of scatterplots are distributed over
the whole SPLOM before the reordering. After
the reordering, relevant and non-relevant scatter-
plots in the D-SPLOM are mostly separated from
each other. Therefore, we can observe that the
quality-aware reordering reduces the region of in-
terest, speeding up the visual search. I.e., a quality-
aware reordering has practical advantages and en-
hances the visual quality of SPLOMs. Depend-
ing on the data set, some dimensions might contain
outliers. This may happen, when the used quality-
measure assigns a low value to most visualizations
of one dimension, but a high value to only a few, as
the dimension4 in the SPLOM, shown in Figure 8.
Our applied color coding allows for easy recogni-
tion of such plots. In the future, we should inves-



Figure 8: Evaluation on non-class-basedParkinson
data set: The ordinary SPLOM (top), the resulting
D-SPLOM (bottom).

tigate how far the quality-aware framework is ap-
propriate and stable to fading out non-relevant scat-
terplot from SPLOMs, speeding up even more the
visual search task.

4 Conclusion

In this paper we, presented two new visualization
matrices to support the visual analysis of high di-
mensional data sets: A class based scatterplot ma-
trix for data sets with label information that sup-
ports the analysis of pairwise relationship between
classes, and a parallel coordinates matrix that al-
lows examining correlations between all possible
dimensions using parallel coordinates plots. Ad-

ditionally, we proposed an information-bearing re-
ordering framework that can improve the visual
analysis task for any matrix-based visualization
method. We have shown that our quality-based vi-
sualization matrices together with the presented re-
ordering framework successfully reduces the region
of interest of the visualization matrices. In the fu-
ture, we intent to evaluate our methods more thor-
oughly with an adequate user study and to allow
user interaction while forming and reordering the
matrices. Furthermore, we would like to test more
sophisticated ranking functions for dimension re-
ordering.
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