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ABSTRACT

Modern visualization methods are needed to cope with very high-
dimensional data. Efficient visual analytical techniques are required
to extract the information content in these data. The large number of
possible projections for each method, which usually grow quadrat-
ically or even exponentially with the number of dimensions, urges
the necessity to employ automatic reduction techniques, automatic
sorting or selecting the projections, based on their information-
bearing content. Different quality measures have been successfully
applied for several specified user tasks and established visualiza-
tion techniques, like Scatterplots, Scatterplot Matrices or Parallel
Coordinates. Many other popular visualization techniques exist,
but due to the structural differences, the measures are not directly
applicable to them and new approaches are needed. In this paper
we propose new quality measures for three popular visualization
methods: Radviz, Pixel-Oriented Displays and Table Lenses. Our
experiments show that these measures efficiently guide the visual
analysis task.

Index Terms: H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval—; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation;

1 INTRODUCTION

Although diverse visualization methods support the exploration of
high-dimensional datasets, the visual analysis of such data is still
a challenging task. The visualization and analysis of multivariate
datasets typically involves mapping the data to lower dimensional
embeddings, which is the case for Scatterplots or pixel-oriented
methods, or determining a placement of the dimensions in multi-
variate visualizations, as in Parallel Coordinates [13] or Radviz [9].
This approach may generate several hundreds or thousands possi-
ble projections for high-dimensional datasets and the visual anal-
ysis may quickly become an overwhelming task. An alternative
solution to this problem is to use a handful of quality measures to
automatically select information-bearing projections of the data.

Quality measures are generally based on a specific user task, and
may be used as a starting point in the visual analysis of multivari-
ate data. Since the pioneering Projection Pursuit approach [6, 12],
which searches for low-dimensional projections that expose inter-
esting structures in the data, was presented, diverse indices and
quality measures have been presented. Recently, innovative ap-
proaches using quality measures for specific visualization meth-
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ods have been proposed for Scatterplots and Parallel Coordinates
in particular[22, 23], but many other popular visualization methods
still have to be explored in this sense.

In this paper we extend the existing set of quality measures
and introduce new techniques for three other popular visualization
methods: Radviz, Pixel-Oriented Displays and Table Lens. Our
motivation to develop new quality measures for other visualization
types is that the visual analysis is usually performed on different vi-
sualizations simultaneously, and that dimensions selected by a qual-
ity measure for a specific visualization method do not necessarily
produce good projections for other visualization methods. We be-
lieve that the visual analysis benefits from automatically selecting
the potentially insightful candidate projections in different visual-
ization techniques. The relevance of the projections is determined
based on the structures present in the visualization image that may
indicate trends in the data, like clusters, outliers or correlations. Our
three main contributions are: a dimension reordering algorithm to
improve the visualization potential of the Radviz; a quality measure
to rank Pixel-Oriented Displays; a measure to improve the usability
of the Table Lens method. We tested our approaches on class-based
and non-class-based datasets; the results show that our measures
successfully support the user in the search for insightful visualiza-
tions and potentially speed up the visual exploration task.

2 BACKGROUND

Radviz, Pixel-Oriented Displays and Table Lens are well-known
and accepted visualization methods for high-dimensional datasets.
We propose the use of quality measures to automatically support
the visual analysis task using these three methods. Such measures
can be exploited to select information-bearing projections that may
be used as a starting point in the visual analysis.

To exhaustively analyze a dataset using low-dimensional projec-
tions, Asimov presented the Grand Tour [3] that supplies the user
with a complete overview of the data by generating sequences of
orthogonal two-dimensional projections. The problem with this
approach is that an extensive exploration of a high-dimensional
dataset is effortful and time consuming, therefore quality measures
are needed to select only the good views of a dataset.

As aforementioned, since the Projection Pursuit approach was
introduced [6, 12], diverse indices and quality measures have been
proposed. The goal of Projection Pursuit was to search for low-
dimensional representations of a high-dimensional dataset where
structures of the data could be observed. Later on, the Scagnos-
tics method was proposed by Tukey et al. [24] to analyze high-
dimensional datasets and Wilkinson presented more detailed graph-
theoretic measures [27] for computing the Scagnostics indices
for Scatterplots. Recently, diverse extensions to such indices,
henceforth termed quality measures, were proposed to rank low-
dimensional projections of the data based on specific visualization
methods. In [22] class consistency quality measures were intro-
duced to rank Scatterplots based on the class information of class-
based datasets. In [23] quality measures for Scatterplots and Par-



allel Coordinates for class-based and non class-based datasets were
presented.

Radviz is a radial visualization method, similar to Parallel Coor-
dinates in the sense that it allows to visualize all dimensions of the
dataset at once. It was first proposed in [9] to help the classifica-
tion of DNA sequences. Later on, Radviz was extensively used to
search for trends, especially clusters, in multidimensional datasets
[10, 21, 17, 16]. We propose the use of quality measures to define
an effective placement of the dimensions for a Radviz. Earlier, the
dimensions were plotted either in the original order of the dataset or
using a Class Discrimination Layout Algorithm [21]. This second
method produces feasible results when applied to flattened datasets,
i.e. the dimensionality is artificially expanded by splitting one di-
mension into two or more new dimensions [8], but our method is
better suited for specific user tasks, like cluster searching (Section
3.3).

The second contribution of this paper is a quality measure to
appraise the information content of projections in Pixel-Oriented
Displays. Pixel-oriented visualization methods are very popular
because they support the visualization of very large datasets. An
overview of pixel-oriented visualization techniques is presented
in [14]. A first trial on quality measures in such displays was pro-
posed in [20], where an algorithm to measure the randomness of
pixel visualizations was defined based on the entropy of the im-
ages. We propose a quality measure to appraise the information
content of pixel visualizations. Our method was tested on Jigsaw
maps [25] and was able to successfully rank the displays according
to their overall information content.

Table Lens is a method to visualize large amounts of tabular data
that uses a focus & context technique to display a detailed form
of the data from selected table regions. It was first proposed in
[19, 18], inspired by the Generalized Fisheye Views [7]. Later on,
Bederson et al. applied the concepts from Table Lens in the Date
Lens fisheye calendar tool [4]. The Data Lens was designed with
the constrained display space of PDAs in mind and supports visu-
alization of different time spans, search and presentation tools to
highlight patterns and outliers. We propose an extension of the Ta-
ble Lens method based on the information-bearing content on the
table. Specifically, we use two measures to identify and highlight
outliers and correlations between dimensions in a user defined Ta-
ble Lens.

3 RADVIZ ANALYSIS

Radviz[9] is a radial visualization method where the dimensions
are represented by points placed equally spaced around a circum-
ference. Each sample xi of an n-dimensional dataset is represented
by a point pi in a 2-dimensional plot, as depicted in Figure 1. Imag-
ine that each point pi is connected by n springs to the n respective
dimensions of the dataset and the spring constant Ki is equal to the
j-th coordinate of xi, namely xi, j . The final position of pi in the
visualization is determined by the point where the sum of all spring
forces is zero and can be computed as:

pi =
∑n

j=1 d jxi, j

∑n
j=1 xi, j

, (1)

d j is the vector pointing from the center to the position of the re-
spective dimension on the circumference.

An important aspect of the Radviz visualization method is that it
supports visualizing all dimensions of a dataset at once, such that it
can be very useful while searching for clusters and outliers in high-
dimensional data. Similar to Parallel Coordinates, a very important
issue in Radviz is to decide in which order the dimensions shall be
plotted to support a specific user task. Radviz is quite sensitive to
the order of the dimensions, e.g. if dimensions with high values for
a sample are placed close to each other in a sector on the circumfer-
ence, this sample will be plotted towards this sector. Furthermore,

Figure 1: Radviz example. The dimensions j are represented by
points, placed equally spaced around a circumference and each
sample xi is plotted at position pi according to its coordinate values
xi, j

samples with similar coordinate values are plotted close to the cen-
ter.

In this paper, we propose to make use of quality measures to
generate a Radviz with an appropriate order of dimensions for a
specific user task. A quality measure can be successfully applied
to a visualization to appraise its information bearing content, but
exhaustively computing all n-dimensional combinations in order to
choose the best one requires a prohibitive amount of time for high-
dimensional datasets.

Therefore the problem at hand is twofold. First, we need a useful
quality measure to define whether a specific Radviz visualization
provides useful information. This will be discussed in Section 3.1.
Second, we need an efficient algorithm to guide the synthesis as it
is unfeasible to create all possible visualizations. We will describe
our approach in Section 3.2.

3.1 Quality Measures

Diverse quality measures can be used to quantify the amount of
information of a Radviz, given a user task. Due to the scatter prop-
erties of a Radviz, most quality measures for Scatterplots may be
applied to Radviz as well. In this paper, our analysis is based on
the user task of searching for clusters, which is a very common
task while visually exploring datasets with the Radviz method. For
class-based datasets, we make use of the Class Density Measure
(CDM) proposed in [23]. The CDM favors projections where the
defined classes are well separated from each other and penalizes
overlapping classes. For the non-class-based datasets, we propose
a new quality measure to rank visualizations by searching for pro-
jections with well defined clusters. We call this measure Cluster
Density Measure. Note that for our quality measures nomenclature,
we assume clusters to be groups of data points close together in
the visualization, while classes are defined as groups of data points
with a previously know labeling.

3.1.1 Cluster Density Measure

The Cluster Density Measure (ClDM) is designed to rank visual-
izations based on their clustering properties. Besides point-cloud-
like visualizations, like Scatterplots and Radviz, it can also be di-
rectly applied to dense visualizations, like Continuous Scatterplots
or Pixel-Oriented Displays. The ClDM algorithm is directly ap-
plied to a visualization image and consists of two main parts: an
image clustering algorithm; the measure estimation based on the
cluster properties. Figure 2 gives an overview of the different steps
of the algorithm.

For point-cloud-like visualizations (Figure 2(a)), we first com-
pute a continuous representation of the image, whereupon a density



(a) (b) (c)
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Figure 2: ClDM algorithm example. (a) Original data plot, (b) density
image computed based on local neighborhoods in the original image,
(c) smoothed density image, (d) cluster contours obtained by zero
crossing detection in the Laplace image of (c), (e) detected cluster
regions and (f) original image with the average radius per cluster
overlaid in the image.

image (Figure 2(b)) is computed based on local neighborhoods in
the original image. Working with a density image instead of the
data points directly, has the advantage of not treating outliers as
compact clusters. The density at a pixel pi is defined as 1/r, where
r is the radius of the enclosing sphere of the k-nearest neighbors of
pi [23]. As these density images are usually still quite noisy, we
extract the low frequency parts in order to create smooth density
images (Figure 2(c)). This can be achieved by applying a Gaussian
filter with a large standard deviation σ . The kernel width has a di-
rect interpretation as the size of a region over which clusters should
preferably not be mixed.

Clusters in these density images appear as smooth blobs (Fig-
ure 2(c)). We define the border of a cluster in the smooth density
image as the point of inflection, i.e. where the curvature changes
its sign. This can be conveniently found by convoluting the image
with a Laplace filter and then searching for zero crossings (Figure
2(d)). Finally, we decide how many clusters are defined by the re-
maining contour based on the distance between the contour points.
Two contour points are considered to belong to the same cluster if
the distance between them is either smaller than a threshold τ or
there exists a path along other contour points where the maximum
distance between two adjacent points on the path is always smaller
than τ . Otherwise, the contour points belong to different clusters.

We set τ =
√

P/5 where P is the number of pixels in the density
image. After labeling the contours, the center ck and average radius
rk per cluster are computed.The final measure is then defined as:

ClDM =
1

K

K

∑
k=1

K

∑
l=k+1

d2
k,l

rkrl

, (2)

where K is the number of detected clusters and dk,l is the euclid-
ian distance between the cluster centers ck and cl . Accordingly, the
ClDM assigns high values to views that present well defined clus-
ters with small intra-cluster distances and large inter-cluster dis-
tances.

3.2 Radviz Sorting

Given the CDM and ClDM measure, we are able to quantify the
quality of a Radviz plot. Now we need an efficient way to find
a good Radviz plot without creating each possible visualization.
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(b) Finding the best placement for the 4th dimension.

Figure 3: Dimension placement example for the first four dimensions
of the Wine dataset. (a) The algorithm is initialized with the 1st and
2nd dimension and the best placement for the 3rd is computed. (b)
Other dimensions are successively added and the best arrangement
is kept in each step.

We propose a greedy incremental algorithm to successively add di-
mensions to a Radviz plot to define a suitable order. This greedy
approach provides a tradeoff between finding the optimal solution,
which can be found by exhaustively searching all possible visual-
ization arrangements, and completing all computations in a feasible
time.

We start by creating a Radviz with only two dimensions. The
first two dimensions added to the Radviz can be the first two in the
dataset or the best two dimensions determined by a quality measure.
We then add another dimension and create all possible 3D Radviz
plots (at the current state only two positions are possible, see Figure
3(a)). According to the quality measure used, the best sequence of
dimensions is selected for further processing. This intermediate
Radviz is then successively augmented with all other dimensions
by searching for and then keeping the best sequence with every
dimension added. The final sequence defines a good placement of
dimensions according to the chosen measure and user task.

Figure 3 shows an example of dimension placement for the first
four dimensions of the Wine dataset. The algorithm is initialized
with the 1st and 2nd dimension and the best placement for the 3rd

is computed (Figure 3(a)). It is worth noting that a Radviz with
three dimensions is not sensitive to their placement, the possible
arrangements present only rotated and/or mirrored variations of the
same structure. We then create all possible Radviz visualizations by
adding the fourth dimension. The best ordering is kept. Therefore
the overall complexity of the proposed algorithm is O(n2), which is
comparably low to an O(n!) exhaustive search.

3.3 Experiments

We tested our Radviz dimension placement algorithm on a vari-
ety of datasets. For classified datasets, we applied the Class Den-
sity Measure (CDM) [23] and for unclassified datasets the Cluster
Density Measure (ClDM) defined in Section 3.1.1. First, we show
our results for the Wine dataset [1], a class-based dataset with 178
records and 13 dimensions that describes chemical properties of
Italian wines from different cultivars. The first plot in Figure 4 is
the original Radviz, without dimension replacement. In the sec-
ond plot, the dimensions were reordered using the t-statistic algo-
rithm proposed in [21]. In the third one the results of our place-
ment algorithm are shown. The t-statistic is used to group dimen-



sions that similarly discriminate the records of a dataset and re-
quires a classification of the records in some manner. Note that
the t-statistic method presented a better plot than the original one,
considering a cluster separation task, but the best plot for the same
task was achieved using our method with quality measures. A sec-
ond example, for another class-based dataset, is shown in Figure
5. Olives[29] is a classified dataset with 572 olive oil records from
nine different regions from Italy, which define the classes of the
dataset. For each sample, the normalized concentrations of eight
fatty acids are given as attributes.

For unclassified data, we show our results in a synthetic dataset
with ten dimensions, Figure 6. As the t-statistic method requires a
classification of the data set, we compare our results for unclassified
data only with the original Radviz. The left plot presented in Fig-
ure 6 is the original Radviz without any dimension reordering and
the right one is the Radviz generated by our dimension placement
algorithm. Observe that the resulting plot using our ClDM method
presents well separated clusters compared to the original plot.
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Figure 4: Original Radviz, t-statistic and our results, respectively, for
the Wine dataset using the CDM measure. The different colors depict
the different classes (cultivars) of the dataset.
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Figure 5: Original Radviz, t-statistic and our results, respectively, for
the Olives dataset using the CDM measure. The different colors de-
pict the different classes (regions) of the dataset.
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Figure 6: Original Radviz and our results, respectively, for a synthetic
dataset with 10 dimensions and 8 clusters using the ClDM measure.

4 PIXEL-BASED DISPLAYS

4.1 Jigsaw Maps

Standard projection techniques reduce the number of dimensions
from n to two plus color information for visualization of the data on

Figure 7: A screen-filling curve, here an H-curve, and a color map-
ping g is used to create a Jigsaw map.

the screen. In some cases, it turns out to be beneficial to go the other
way around and represent a one dimensional function as a 2D plot
in order to preserve some of the characteristics inherent in the data,
e.g., natural order and locality. Examples of such data, would be the
household income of a certain region or weather data. This is the
idea behind Wattenberg’s Jigsaw maps [25]. Jigsaw maps project
the one dimensional data, or each dimension of multivariate data,
into the 2D plane, using a space filling curve, in such a way that
properties like locality and clusters are preserved, an example can
be seen in Figure 7. If the dataset conveys more than one dimension,
one Jigsaw map for each dimension is created.

An important step to create a Jigsaw map from a set of one di-
mensional data points X j is to first normalize the values according

to the desired output image size s2: To serve this purpose a function
g(X j) needs to be defined to map X j into sequences of subsets of

{1,2, ...,s2}

g(X j) = ({1,2, ...,m1},{m1 +1, ...,m2}, ...,{mk−1 +1, ...,mk})

where mi = x1, j +x2, j + ...+xi, j, and mK = s2 where s2 is the num-
ber of pixels in the output visualization. Width and height are con-
sidered to be of equal size and are usually a power of two. The
layout function J for the Jigsaw maps can be defined using g and
another function H: a screen-filling curve satisfying c-locality. C-
locality is preserved wenn the diameter of a region ri corresponding
to a data point xi, j is bounded by a small constant c. This keeps re-
gions relatively compact in the output. Then

J(X j) = H(g(X j)) ,

i.e. each data value is given a set of connected positions along the
screen filling curve and a color. A common choice for the color
mapping is to assign the data values to a color gradient in order to
ease the interpretation of the underlying data. We use linear map-
ping for the experiments in this paper. However, other sophisticated
mappings [5] may be used without additional effort together with
our quality measures. An example for a space-filling curve and its
colorization is given in Figure 7.

4.1.1 Quality Measure

The task at hand is to find interesting structures in a Jigsaw map,
clusters are the most well known. But it can be hard to find clus-
ters, as these structures usually do not have any specific size or
layout which makes it difficult to describe them in a mathemati-
cal sense. Schneidewind et al. [20] used the entropy or standard
deviation of the color values in different grid cells to derive a qual-
ity measure. The algorithm considered regions as interesting if the
entropy or standard deviation was larger than a certain threshold
τmin but smaller than another threshold τmax. There are two draw-
backs of this method. First, the thresholds need to be set by hand.



Original Jigsaw map J(X j) Noise function ℵ(X j) Dissimilarity measure

Figure 8: Visualization of the noise dissimilarity, from left to right:
Original Jigsaw map J(X j), corresponding noise function ℵ(X j), our
noise dissimilarity measure computed for each pixel (values are lin-
earily scaled for better readability). Lighter values correspond to a
stronger dissimilarity and therefore more interesting structures. The
top row shows an outlier example in the Ozone dataset [28]. Our al-
gorithm highlights these outliers as interesting regions. In the bottom
row a visualization with more abstract patterns is shown. Note that
most of these structures are captured well with our approach.

Without any knowledge of the underlying data this can be tedious.
Second, entropy as well as standard deviation do not pay any at-
tention to the spatial arrangement of the data. To do so, the user is
urged to provide a weighting function for the hierarchical analysis
in [20]. Again this can be difficult, if the structures searched for are
unknown.

Instead of searching for interesting structures directly, we pro-
pose to quantify the dissimilarity to a noise function ℵ(X j). We
impose ℵ(X j) to have the same color probabilities as J(X j), i.e. the
histograms of both images are equal. In practice we can eas-
ily achieve this by randomly permutating the pixel coordinates of
J(X j). An example of such a Jigsaw map J(X j) and its correspond-
ing noise function ℵ(X j) is given in Figure 8 in the left and middle
images.

Next, we assume that Jigsaw maps J(X j) as well as the noise
function ℵ(X j) can be modeled by a Markov Random Field that
models the images as a realization of a local and stationary ran-
dom process. Each pixel is characterized by a small set of spatially
neighboring pixels, and this characterization is the same for all pix-
els. This model has been succesfully used for exemplar-based tex-
ture synthesis, see e.g. [26], which is related to our problem. In
exemplar-based texture synthesis one starts with a noise function
and tries to explain this noise function with a given input image.
Now, we do the same but with exchanged images. We will try to
explain a given visualization J(X j) with potential information by a
given noise function ℵ(X j).

Due to the assumed locality and stationary characteristics of our
images, we can base our quality measure on the similarity, respec-
tively the dissimilarity, between local neighborhoods of each pixel
in J(X j) and each pixel in ℵ(X j). We call this the Noise Dissim-
ilarity Measure (NDM). We denote a neighborhood of pixels with
radius r around a pixel i with JNH(i)(X j), ℵNH(i)(X j). To quantify

the noise dissimilarity we compute:

NDM(J(X j),ℵ(X j)) =
1

ω

s2

∑
i=1

diss(Ji(X j),ℵ(X j)) , (3)

with

diss(Ji(X j),ℵ(X j)) = min
k

(||JNH(i)(X j)−ℵNH(k)(X j)||2)

and ω = s2(2r +1)2

Worst Plots
0.0 0.004 0.017

0.7444 0.977 1.0
Best Plots

Figure 9: Jigsaw maps[25] of the Ozone dataset [28]: The top row
shows the three worst plots, while the bottom row shows the three
best plots and their associated normalized goodness values as it was
estimated by our NDM. Obviously the top row contains mainly noise
and it is difficult to find interesting regions in such a visualization,
also note that its overall appearance is more dull. The best plots
according to the NDM show a larger degree of potentially meaningful
patterns and a higher contrast. The goodness values of all plots have
been normalized to range between 0 (for the worst plot) and 1 (for the
best plot).

Here diss(Ji(X j),ℵ(X j)) is simply the sum-of-squared differences
between a neighborhood vector NH around pixel position i in J(X j)
and the best matching neighborhood in ℵ(X j) which was found at
pixel k. The size of the neighborhood is defined by its radius r. ω is
a normalization factor which makes the measure invariant towards
the image size and the neighborhood radius.

As the neighborhood matching employed in calculating the
NDM is a very costly procedure, we apply different techniques to
speed up the process. We limit the radius of the neighborhoods to
r = 2, resulting in a 5×5 neighborhood, which turns out to be suffi-
cient in our test cases. As we use color images, this results in a 75D
vector for comparison. We accelerate neighborhood matching by
projecting the 5×5 pixel neighborhoods into a truncated 12D prin-
cipal component analysis (PCA) space. In addition we use a fast
nearest-neighbor search [2] to find the best matching neighborhood
in ℵ(X j).

The NDM has several beneficial properties. The characteristic
of the noise function is a total absence of structures, therefore re-
gions in J(X j) differing from every neighborhood in ℵ(X j) will
likely contain interesting patterns. In addition, this measure also
penalizes badly chosen color mappings. Low contrast images will
result in less dissimilarity to ℵ(X j), while high contrast images are
preferred.Theoretically, the NDM should be applicable with little
changes to other visualization methods, e.g. Pixel Bar Charts [15],
but we currently did not investigate further in this direction.

4.1.2 Experiments

As an application example we analyzed the Ozone Level Detection
dataset [28] with 2536 instances and 73 dimensions. The visual-
izations for dimension 9 (WSR8), 24 (WSR23) and 60 (U70) have
been considered to be the worst by our algorithm. They hardly con-
tain any interesting regions and mainly contain noise (Figure 9, top
row). Dimension 9 and 24 depict the measured wind speeds at dif-
ferent times, which are relatively constant with only few changes.
On the other hand, dimensions 30 (T3), 34 (T7) and 35 (T8), which
depict the temperature at 3am, 7am and 8am in the morning, pro-
vide insights into the change of temperature throughout the years.



5 TABLE LENS

Graphical Compressed Tables (GCT) are a common technique to
visualize large datasets in tabular form. Within this representation
columns contain the information for the different dimensions and
rows correspond to the attributes or samples of the dataset. Every
row and attribute has a height of one pixel and represents the un-
derlying data qualitatively utilizing a tiny bar metaphor. Similar to
other visualization techniques, only the relative values are visible
for each dimension. Row-based sorting techniques allow for rec-
ognizing dimensional-dependencies (for instance correlation) in a
comprehensive manner.

Table Lenses (TL) are an established and well-accepted focus &
context technique for GCT’s and have been introduced in [19] and
[18]. Using this technique, the user can select dimensions (column)
and attributes (rows), that are then represented as spreadsheets, in-
stead of the compressed style. Thus, it is possible to steer the De-
gree of Interest (DOI) and allow for systematic explorative visual
search. A subset of information is selected from the dataset by se-
lecting dimensions and attributes in a GCT representation.

Table Lenses easily become confusing for the user as soon as
more than a few dimensions or samples have been selected and it
becomes difficult to see interesting patterns like correlation or out-
liers in the data. An example of a GCT and an according GCT+TL
is shown in Figure 10.

In this section, we present a semi-automatic approach to extend
the Table Lens technique to visually support and present inter- and
intra-dimensional relations in the selected data. We support user
tasks like outlier detection or correlation detection. The user can
select regions which are enhanced similar to a Table Lens, but ad-
ditional information from the applied quality measures are added to
support the analysis.

Dimension Identifier Active Dimension IdentifierDimension Identifier Dimension Identifier Dimension Identifier Dimension Identifier

Active Attribute Component TextActive Attribute Component Text

   Data

Attributes

Dimensions GCT

GCT

+TL

Dimension Identifier Dimension Identifier Dimension Identifier Dimension Identifier Dimension Identifier Dimension Identifier

Figure 10: Standard Design for a Graphical Compressed Table and
the Table Lens extension. Top row: Dimensions are mapped to
columns, with a dimension descriptor at the top, while the different
data values are mapped to the corresponding row in a GCT. Bottom
row: GCT with active TL emphasize a selected subset of the under-
lying dataset.

5.1 Quality Measures

5.1.1 Data extraction

In the special case where the original data is no longer available,
the GCT must be analyzed directly to extract the relative data val-
ues for each dimension and sample. We will not go into too much
detail here, but basically one can search for horizontal and vertical
lines in the same color as the border and extract them. This divides
the image into different grid cells. After removing the dimension
identifier at the top of each column, each grid cell left represents
one dimension of the dataset. As each attribute is one line in these
cells, the relative (and potentially discretized) data values can be
easily extracted.

5.1.2 Attribute Correspondence Matrix

Once we reconstructed the dataset up to a scale factor for each di-
mension, the user can start his/her visual analysis by selecting cer-
tain dimensions and attributes, similar to Table Lenses. From the
selected regions we extract an attribute correspondence matrix D.
Each column of D represents one of the selected dimension did ,
while each row represents the selected attributes aid , see Figure 11.
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Figure 11: Example of the attribute correspondence matrix D. The
matrix is established from the selected dimensions, here 0,2 and 3,
and the selected attributes, 19 till 25, and the corresponding values
from the GCT (for better readability the GCT+TL is shown).

5.1.3 Enhanced Table Lens Visualization

Using the attribute correspondence matrix D, a local statistic data
analysis can be performed on the basis of the extracted qualitative
values. To demonstrate this procedure, we describe algorithms ap-
plied to D to identify outliers and linear correlations. In order to
find a suitable measure to describe outliers, all attribute values are
assumed to follow a normal distribution. For each value D(di,a j),
a value o(di,a j) is calculated that describes the likeliness for an
outlier:

o(di,a j) = min(1,
|D(di,a j)−µdi

|
3σ

)

with

µdi
=

1

naa

naa−1

∑
l=0

D(di,al); σ =

√

√

√

√

1

naa

naa−1

∑
l=0

(D(di,al)−µdi
)2 ,

where naa is the number of active attributes. If o(di,a j) > 3σ then
o(di,a j) is 1. This choice is motivated by the fact that 99.97% of
all values are within a µ ± 3σ environment (3 sigma rule). The
closer a value D(di,a j) is to the boundary of 3σ , the more likely
this value can be considered as an outlier. To highlight these outliers
visually, we use a colormap to encode the corresponding area in the
GTC+TL relative to o(di,a j). High values are marked yellow and
low ones are colored in dark green, see Fig. 12 middle right. For
each possible pairwise combination of dimensions di and d j in D
the correlation coefficient k(di,d j) is calculated to emphasize the
linear correlation between two dimensions of the subset:

k(di,d j) =
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∣
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Due to the absolute value of k, our measure also detects negative
correlations.



The n best correlation pairs, i.e. pairwise dimensions, will be
visualized in the Table Lenses. This is done by mapping every sin-
gle combination of the best pairs (di and d j) to an individual color.
The color of one pair implicitly encodes a visual relation between
these dimensions. While the base color can be chosen arbitrarily,
the brightness b of that color is defined as:

b =
k(di,d j)

kmax
(4)

with

kmax = maxi, j(k(di,d j))

Using this description, the individual correlation coefficient
modifies the brightness of the final color, highlighting (relatively)
good correlations. The corresponding TL area is split into s equally-
colored sectors, where s is the number of correlations between di-
mension di to the other marked dimension which are among the n
best correlation coefficients, see Fig. 12 on the right.

5.2 Experiments

Figure 12 depicts the experimental results for the Olive dataset [29]
and the Yeast dataset [11] with different Table Lens configurations.
In the leftmost image the GCT is shown followed by the standard
GCT with TL. The image on the middle right illustrates our result
on potential outlier detection (yellow) and the image on the right
marks pairwise linear correlations for the three best correlation can-
didates within the subset.

It can be stated that outliers can be identified fast and are well
recognizable using the imposed color scheme. Less probable can-
didates are shown in more decent colors. In addition to this, the
correlation between different active parts of the dimensions can be
detected quickly. For instance the visualization reveals that dimen-
sion 2 and 5, 2 and 6 as well as 5 and 6 are in direct relation to each
other in the Olive dataset shown in Figure 12 (a).

The significance of the identified linear correlation can be visu-
ally analyzed using the displayed color brightness. It can be ob-
served that the selected regions of dimension 2 and 5 (light green)
has the strongest correlation within this configuration. Furthermore,
it is noticeable that dimension 2 and 3 have the strongest correlation
within the selected subset of the Yeast dataset (Fig. 12 (b)).

Note that the correlations are still relative and not absolute with
respect to the original dataset. Therefore the visualization enhances
correlation tendencies within the given subset without communicat-
ing the actual absolute strength of those dependencies. In general
an absolute quantization of the analyzed values can be deduced by
setting kmax = 1 in equation 4, which removes the value normaliza-
tion for b.

6 CONCLUSION

In this paper, we extended the existing set of quality measures
presented in [23], and proposed new techniques for three other
popular visualization methods: Radviz, Pixel-Oriented Displays
and Table Lens. Specifically, we presented an improvement for
the Radviz method with a greedy dimension placement algorithm
based on quality measures. This can be applied to data with pre-
defined categorical labels or datasets without any class informa-
tion, We compare our method with a previously proposed sorting
method for Radviz [21] and show the improvements introduced by
our approach. Moreover, we proposed a new quality measure spe-
cialized for the clustering user task in point cloud-like visualiza-
tion methods, e.g. Scatterplots and Radviz, an algorithm to detect
information-bearing structures in Pixel-Oriented Displays, and fi-
nally, we incorporated information-bearing algorithms into the Ta-
ble Lens technique for the purpose of finding correlation and out-
liers. With respect to performance, in our examples, the compu-
tation time has never exceed 300 milliseconds for the Table Lens

algorithm, 180 milliseconds for each Jigsaw image, and 100 sec-
onds for the Radviz sorting using the CDM measure. However, this
computing time may be significantly reduced using a GPU imple-
mentation.

The presented contributions are able to aid and potentially speed
up the visual exploration process and are a further step towards the
realization of an effective and efficient visual analysis tool for high-
dimensional data. As future work, we intent to compare quality
measures for different visualization methods and connect all these
approaches in a single visualization tool.

ACKNOWLEDGEMENTS

This work was supported in part by a grant from the German Sci-
ence Foundation (DFG) from projects DFG MA2555/6-1 and DFG
TH692/6-1, within the strategic research initiative on Scalable Vi-
sual Analytics.

REFERENCES

[1] S. Aeberhard, D. Coomans, and O. D. Vel. Comparative-analysis of

statistical pattern-recognition methods in high-dimensional settings.

pattern recognition. In IEEE Signal Processing Workshop on Higher

Order Statistics., pages 14–16. John Wiley, 1994.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu.

An optimal algorithm for approximate nearest neighbor searching in

fixed dimensions. In ACM-SIAM Symposium on Discrete Algorithms,

pages 573–582, 1994.

[3] D. Asimov. The grand tour: a tool for viewing multidimensional data.

Journal on Scientific and Statistical Computing, 6(1):128–143, 1985.

[4] B. B. Bederson, A. Clamage, M. P. Czerwinski, and G. G. Robertson.

Datelens: A fisheye calendar interface for pdas. ACM Transactions on

Computer-Human Interaction, 11:90–119, 2004.

[5] E. Bertini, A. D. Girolamo, and G. Santucci. See what you know:

Analyzing data distribution to improve density map visualization. In

EuroVis, pages 163–170, 2007.

[6] J. H. Friedman. Exploratory projection pursuit. Journal of the Ameri-

can Statistical Association, 82(397):249–266, 1987.

[7] G. W. Furnas. Generalized fisheye views. SIGCHI Bull., 17(4):16–23,

1986.

[8] G. Grinstein, P. Hoffman, S. Laskowski, and R. Pickett. Benchmark

development for the evaluation of visualization for data mining. In

Information Visualization in Data Mining and Knowledge Discovery,

pages 129–176. Morgan Kaufmann, 2001.

[9] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, and E. Stanley. Dna

visual and analytic data mining. In Proceedings of the 8th conference

on Visualization ’97, pages 437–ff., Los Alamitos, CA, USA, 1997.

IEEE Computer Society Press.

[10] P. Hoffman, G. Grinstein, and D. Pinkney. Dimensional anchors: a

graphic primitive for multidimensional multivariate information visu-

alizations. In NPIVM ’99, pages 9–16, New York, NY, USA, 1999.

ACM.

[11] P. Horton and K. Nakai. A probabilistic classification system for pre-

dicting the cellular localization sites of proteins. In International Con-

ference on Intelligent Systems for Molecular Biology, pages 109–115,

1996.

[12] P. J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–

475, 1985.

[13] A. Inselberg. The plane with parallel coordinates. The Visual Com-

puter, 1(4):69–91, December 1985.

[14] D. A. Keim. Designing pixel-oriented visualization techniques: The-

ory and applications. IEEE Transactions on Visualization and Com-

puter Graphics, 6:59–78, 2000.

[15] D. A. Keim, M. C. Hao, U. Dayal, and M. Hsu. Pixel bar charts:

A visualization technique for very large multi-attribute data sets. Vi-

sualization, extended version in: Information Visualization Journal,

Palgrave, 1(2), 2002.
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