
Institut für
Mechatronische Systeme
Leibniz Universität Hannover

Object’s Motion Estimation from Observer’s
Monocular Vision

Master Thesis M-08/21-1057

Fang Xiao
Matrikelnummer 10017948

Hannover, 16. August 2021

First Examiner Dr.-Ing. Mark Wielitzka
Second Examiner Prof. Dr.-Ing. Eduard Reithmeier
Supervisor Karl-Philipp Kortmann, M.Sc.

Priv.-Doz. Dr.-Ing.habil. Dirk Joachim Lehmann

Ich, Fang Xiao, versichere hiermit, dass die vorliegende Arbeit selbstständig verfasst wurde,
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt wurden, alle Stellen
der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als
solche kenntlich gemacht sind und die Arbeit in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen hat.

Hannover, 16. August 2021

(Fang Xiao)

Abstract

In this thesis, objects’ distance and velocity relative to the camera are estimated based on
monocular video data, where object detection, tracking, depth map estimation are conducted
continuously. The velocity, defined as the derivative of position with time, can then be
acquired.

A series of neural networks are chosen to perform the sub-tasks mentioned above, respectively.
Considering that there are differences between sub-tasks, the choice of end-to-end system is
discarded. Therefore, the networks for components are independently selected and trained,
which then collaboratively produce the final motion estimates as a complete object motion
estimation system.

Quantitative evaluation is conducted firstly on each sub-task separately to locate the advan-
tages and weaknesses for the pipeline, and then on the overall pipeline to test the feasibility
of this system. Qualitative results are also analyzed, which supplement the practicality that is
not thoroughly covered by the quantitative results.

Although we have not achieved outstanding scores in benchamarking, the highlight of our
system lies in the practicality that most of the the network’s training is unsupervised, i. e.
requires no labeling. Also, the pipeline has demonstrated flexibility that allows convenient
substitution for each component, which is vital for (continuous) future updates.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Structure of the Thesis . 5

2 Fundamentals 6
2.1 Basic Geometry . 6

2.1.1 Geometric Transformation . 6
2.1.2 Perspective Camera Model . 7
2.1.3 Triangulation with Epipolar Geometry 10
2.1.4 Image Inverse Warping . 12

2.2 Deep Learning Basics . 14
2.2.1 Convolutional Neural Network . 14
2.2.2 Residual Network . 17

2.3 Visual Object Recognition . 20
2.3.1 Object Detection . 21
2.3.2 Object Tracking . 22

2.4 Motion Estimation . 26
2.4.1 Egomotion Estimation . 26
2.4.2 Distance and Velocity Estimation 28
2.4.3 Kalman Filter . 30

3 Applied Algorithms 33
3.1 Object Detection with YOLOv4 . 33
3.2 DeepSort Tracking . 38

3.2.1 Tracking Pipeline . 39
3.2.2 Feature Extractor . 42

3.3 Monodepth2 for Depth Estimation . 43
3.3.1 The Depth Net and Pose Net . 44
3.3.2 The Training Strategy . 44

Contents ii

3.4 Object Motion Derivation . 49
3.4.1 Supervised-Learning Method . 49
3.4.2 Generalized Method for Unfamiliar Scenes 51

4 Proposed Object Motion Estimation System 54
4.1 Overall Pipeline . 54

4.1.1 The General Solutions . 55
4.1.2 Implementation Details . 59

4.2 Highlights and Main Contributions . 64
4.2.1 Additional Features . 68

5 Evaluation 72
5.1 Datasets . 72

5.1.1 KITTI Dataset . 72
5.1.2 CVPR’17 Velocity Challenge Dataset 72

5.2 Multi-Object Tracking Evaluation . 74
5.2.1 HOTA Metric . 74
5.2.2 Evaluation on DeepSort . 77

5.3 Depth Map Evaluation . 77
5.4 Object Velocity Evaluation . 78

6 Results 80
6.1 Multi-Object Tracking Evaluation Results 80
6.2 Depth Map Evaluation Results . 82
6.3 Object Velocity Evaluation Results . 83
6.4 Discussion . 85

7 Conclusion 88
7.1 Future Work . 89

Appendix 89
.1 Additional Details on Algorithms . 90
.2 Additional Implementation Details . 92
.3 Additional Evaluation Details . 93

Bibliography 97

iii

Glossary

Acc accuracy
BN batch normalization
BBOx bounding box
CS coordinate system
CNN convolutional neural network
CV computer vision
CPU central processing unit
CSPNet cross-stage partial network
Det detection
D-IOU distance-intersection-over-union
DL deep learning
disp disparity
DME depth map estimation
EST estimated
FPS frame per second
FE feature extractor
FP false positive
FN false negative
FC fully-connected
GPU graphics processing unit
GT ground truth
IOU intersection over union
ID identity
IA identity association
KF Kalman filter
LiDAR light detection and ranging
MOT multi-object tracking
MLP multi-layer perceptron
NN neural network

Contents iv

NMS non-maximum suppression
OD object detection
OMD object motion derivation
OME (the overall system of) object motion estimation
PA path aggregation
pp principal point
PH projection head
Re-ID re-identification/re-identify
RGB red-green-blue color mode
ResNet residual network
ResBlock residual block
RAE relative absolute error
RSE relative squared error
RMSE root-mean-square error
RMSLE root-mean-square log error
IDSW (number of) identity switch
SOT single-object tracking
SPP spatial pyramid pooling
TBD tracking by detection
TP true positive
TN true negative
W-ResNet wide residual network

1

1 Introduction

1.1 Motivation

Estimating of objects’ movement, including spatial position and speed, serves a crucial
role in many areas, e. g. autonomous driving, scene understanding and robotics. While
the relative distance demonstrates the location of surroundings, the perception of dynamic
motion can help extend this perception to a near future. There exist two fundamental
principles distinguished by the sensor type, each of which has its own methods, i. e. image-
or point-cloud-based techniques.

Stereo vision-based depth estimation, mimicking how human eyes perceive the surroundings
from two RGB images taken simultaneously by a stereo camera set, is one of the image-
methods. A traditional taxonomy concluded by SCHARSTEIN ET AL. (2001) [SSZ01] is:
Same regions between two images are recognized by matching the hand-crafted features
(e. g. FAST feature detector proposed by ROSTEN AND DRUMMOND (2006) [RD06]), then a
pixel-wise depth map is derived through triangulation. Later works, e. g. by ZAGORUYKO

and KOMODAKIS (2015) [ZK15], adopted deep-learning (DL) techniques and treated the
feature matching as a one-step data-driven learning task. More recently, new DL-approaches,
e. g. the SfMLearner by ZHOU ET AL. (2017) [Zho+17], has freed the task from explicit
image-pair feature extraction, enabling the NNs to learn implicit features directly and estimate
the depth information from individual image(s), i. e. the so-called monocular vision.

The depth estimation based on light detection and ranging (LiDAR), inspired by environment
perception of animals like bats, also receives a warm welcome in this field. Instead of
passively accepting the visual cues from the environment, a LiDAR system actively emits
light pulses and receives their reflections from the surroundings. It then converts the received
light pulses into the point cloud, out of which the 3D position, reflection intensity ,and even
surface property of the object can be derived. LiDAR data can be utilized for depth estimation
just as monocular vision, e. g. QIU ET EL. (2019) [Qiu+19] proposed a point-cloud-based
(monocular-vision-guided) NN that estimated the dense depth map.

1 Introduction 2

Inspired b KAMPELMÜHLER ET AL. [KMF18] (2018), this work splits object-wise motion
estimation into

• object detection (OD),

• multi-object tracking (MOT),

• depth map estimation (DME),

• and finally the object-wise motion derivation (OMD)

Instead of stacking complicated data sources, this work merely takes single-image as input
with minimum data processing complexity.

The involved NN models are mainly trained with KITTI dataset [Gei+13]. The evaluations
of tracking and depth map estimation are conducted in KITTI, while CVPR’2017 vehicle
velocity estimation challenge (VeloChallenge) is utilized for the evaluation of object relative
velocity.

1.2 Related Work

As stated in Section. 1.1, the complete objects’ motion estimation over time covers aspects
of object detection (OD), multi-object tracking (MOT), and depth map estimation (DME)
and object motion derivation (OMD), this section will discuss related work in these fields.

The OD is one of the most heavily studied domains in deep learning (DL). There are
traditional algorithms based on hand-crafted features, e. g. the histogram of oriented gradient
(HOG) feature proposed by N. Dalal, N. and B. Triggs (2005). Compared to DL-based
methods, they are generally outperformed in terms of accuracy, speed and adaptiveness
to unfamiliar scenes. The DL-based methods for OD are divided into one- and two-stage
detectors. The R-CNN family: R-CNN [Gir+14], Fast R-CNN [Gir15] and Faster R-CNN
[Ren+17], are representatives for two-stage detectors, as they insert an additional module
to propose regions of interest (ROIs) between feature extraction and final regression. The
one-stage detectors, such as YOLO-family(YOLOv3 [RF18], YOLOv4 [BWL20], etc.), SSD
[Liu+16], do not explicitly distinguish the regions of background from objects, but directly
perform regression tasks and use Jaccard index to determine the error/dissimilarity (see
Fig. 1.1).

1 Introduction 3

A

B

+ +

A∪B

A∩B

Figure 1.1: Illustration of Jaccard index. A measurement for the (dis-)similarity between two
sets. When it comes to two areas, it is identical to the ratio of intersection over
union (IOU), i. e. the ratio of A ∩ B to A ∪ B.

The comparison between one- and two-stage detectors is demonstrated in Fig. 1.2. The
one-stage detectors have faster inference speed, while they suffer from inaccuracy when it
comes to smaller objects. There are also novel models, e. g. CenterNet [Dua+19], which
treats object locations as points instead of bounding boxes (BBoxes) and predicts heatmap
with peaks to indicate the object position. They perform in even less inference time and
can adapt to more crowded scenarios. Object tracking is split into single and multiple
object tracking (SOT and MOT), which tracks only one or multiple objects in each image.
Traditional algorithms, e. g. MOSSE [Bol+10] and KCF [Hen+15] tracker, focus on the SOT
task, where they use the kernel initialized by the template patch to perform correlation with
target image. The tracked area is determined by correlation score and the kernel will be
updated progressively. The later work based on DL, such as SiamRPN [Li+18] and SiamDW
[ZP19], achieved more robustness as the network can learn richer and more complex features
for matching.

When it comes to MOT, simply stacking the SOT-trackers can form an MOT-tracker, but the
difficulty lies in re-identification (Re-ID), i. e. correctly assigning a unique ID to the same
object overtime. The DeepSort tracker proposed by WOJKE ET AL. (2017) [WBP17], is a
pioneer work for MOT, which depends on the expert system to coordinate the tasks of ID
initialization, restoration and destruction, etc. It also features fast inference time as it only
uses Kalman Filters to model the track and a lightweight feature extractor for appearance
information. ZHANG ET AL. (2020) [Zha+20] presents a DL-based algorithm FairMOT: It
constructs a model end-to-end trainable that combines the CenterNet detector and feature
extractor to multitask the OD and Re-ID.

1 Introduction 4

Input Backbone Neck Dense
Prediction

Sparse prediction

One-Stage Detector

Two-Stage Detector

Figure 1.2: Comparison between the general structure of one-stage and two-stage detectors.
The former detectors estimate final detection results directly by the extracted
feature, while the latter use dense prediction merely as a pre-selection step (to
propose region of interest). The arrows indicates how the information flows
through the network.

As for the monocular DME, it estimates the depth map,i. e each pixel is the depth value, from
a RGB image. Although there are methods using additional training data of stereo image-
pairs, e. g. the work by ŽBONTAR AND LECUN (2016) [ŽL16], or LiDAR data [KSL17],
these kinds of ground-truth (GT) are not convenient to obtain in practice. Therefore, the self-
supervised-learning methods manifest greater practicability, e. g. the SfMlearner [Zho+17]
utilizes only monocular image, and the work by GORDON ET AL. (2019) [Gor+19] takes a
further step to learn the camera intrinsic parameters.

However, it is still an ill-posed problem for object-wise motion estimation, since it must
combine OD, MOT, and DME together to produce the final estimates on individual objects,
and then additionally derive the velocity. A typical pipeline, like in [KMF18] or [Son+20],
treats the problem as a regression task after DME or optical flow estimation to concatenate
a small multi-layer perception (MLP) to derive the individual depth and velocity estimates.
However, the final MLP makes the pipeline dependent of GT data, constraining the capability
for unfamiliar scenes.

1 Introduction 5

1.3 Structure of the Thesis

This thesis is organized as follows:

• Chapter 2 introduces the fundamental knowledge as well as general concepts regarding
the research.

• Chapter 3 illustrates the mechanisms of specific algorithms chosen for each module in
this work.

• Chapter 4 elaborates the motion estimation pipeline built on the combination of the
specified algorithms.

• Chapter 5 introduces the evaluation setup and process, including the dataset choices,
evaluation methods, and metrics. Main contributions are highlighted.

• Chapter 6 discusses the evaluation results and provides insight for future research.

6

2 Fundamentals

This chapter is organized as follows:

• Section 2.1 introduces the geometric knowledge involved in this work.

• Section 2.2 illustrates the Deep Learning basics heavily used in this work, including
convolutional neural network and residual network.

• Section 2.3 defines two visual recognition tasks, namely object detection and tracking.

• Section 3.4 gives a general introduction to the motion components, including egomo-
tion, and relative distance and velocity.

2.1 Basic Geometry

In this section, geometric knowledge involved in this work will be introduced. Subsec. 2.1.1
introduces the geometric transformation of a rigid body moving in three-dimensional space.
Subsec. 2.1.2 and 2.1.3 describe the pinhole model and epipolar geometry, respectively. At
last, image warping, an important mechanism used in our depth map estimation model, is
presented.

2.1.1 Geometric Transformation

The movement includes the change in position and orientation, and can be decomposed
into translation and rotation. The coordinate system (CS) is used to describe the process
mathematically, which can be defined through orthogonal basis e = (ex, ey, ez), where
the subscripts are referred to as the x, y and z axes. As shown in Fig. 2.1There are two
fundamental types of CS:

• the world CS, denoted by (CS)0. It is a fixed, absolute reference to any object. Any
point position can be described in global CS by a vector v = (ex, ey, ez) (vx, vy, vz)

T,

2 Fundamentals 7

which stands for a vector pointing from the CS origin to the target point. The vector
(vx, vy, vz) are referred to as the coordinates of this point.

• the local CS, denoted by (CS)B. It is bounded to a target and originated in a specified
point on this object. The CS orientation as well absolute position moves along as the
object moves.

The linear translation, e. g. from a point A to B with global coordinates, namely vec-
tors (XA, YA, ZA) and (XB, YB, ZB) can be described in t = (ex, ey, ez) (XA − XB,YA −
YB,ZA − ZB)T. The translation process expressed asB = A+ t

When it comes to rotation, it is often represented through changes in orientation of local axes.
There exists a variety of conventions. Here are two mostly used ones:

• the Euclidean angles decompose an arbitrary orientation change into threefold sub-
rotations around the three axes of a reference CS, denoted by three angles α, β, γ. The
reference CS can either be the fixed world CS or dynamic local CS. Since different
rotating sequences lead to different ending orientations, the usage of Euclidean angles
must always be specified with its sequence.

• the axis-angle representation. Since any change in orientation can be achieved by
rotating the body around a specific axis by a certain angle (the so-called axis angle),
this representation is defined as the vector (α, β, γ, θ). The first three members form a
unit vector (α, β, γ) that defines the axes in (CS)0, while the last θ defines the rotation
angle. Note that the Axis-angle representation is equivalent to the rotation vector,
which merges the θ into the former three elements, namely (α · θ, β · θ, γ · θ) in the
same case.

2.1.2 Perspective Camera Model

The perspective camera model, or better known as the pinhole model, describes how a three-
dimensional object is projected onto an image plane. Fig. 2.2 shows a simplified geometry
model: If there is a lens with focal length f , a target point with distance S1 > f , its projection
will be on the image plane with distance S2 parallel to the lens. Place an actual screen or
image sensor there, and a real image will be formed.

The relationship between the three is mathematically expressed through the Lensmaker
equation (Eq. 2.1), while the proportion of the ratio of actual dimension H1 to projected

2 Fundamentals 8

ez

ex

ey
B

ez

ey
ex

P

(CS)0

(CS)B 0TB

Figure 2.1: The world and the local coordinate system, denoted by (CS)0 and (CS)B. Their
bases The P is an arbitrary point on the object. Their base is composed of (ex,ey
and ez. The arrow indicates the transformation 0TB from (CS)0 to (CS)B. As
needed, an arbitrary point P can be described in (CS)0 or (CS)B.

dimension H2 is proportional to the ratio of S1 to S2 (Eq. 2.2):

1

S1

+
1

S2

=
1

f
, (2.1)

H1

H2

=
S1

S2

. (2.2)

In this process, as Fig. 2.3 illustrates, there are mainly three coordinate systems involved,
namely the world (CS)0, the camera (a rigid body) (CS)C, and the image plane (CS)I. (CS)0
is where we locate both the observer/camera and the target, while the latter two is how we
connect an object’s representation between (CS)0 and (CS)I.

Denoting coordinates of the origins of the world and camera CS byX0 = (X0, Y0, Z0) and
XC = (XC, YC, ZC), respectively, their relationship can be expressed as follows:

XC = [R | t] ·X0, (2.3)

whereR and t, as before, represent the rotation and translation, respectively.

The image plane is two-dimensional and bounded to the camera CS. The projection of the
target from the camera CS to the image plane, the coordinates will be X I = (x, y), losing
the information in the Z-axis direction. In other words, each pixel coordinate represents a
determined 2-D angle in a 2-D image rather than a position measurement. Given the focal

2 Fundamentals 9

S1 f

A

O F

A'

B
B'

S2

H1

H2

Figure 2.2: (Simplified) Image formation by an optical lens. The A−B and A′ −B′ denote
the actual and projected object with height of H1 and H2 respectively. O is the
lens center, while F is the focus. The S1, S2, f are the horizontal distance from
O to F , A−B and A′ −B′, respectively.

length in x- and y-axis direction (fx and fy), the relationship is expressed as(
x

y

)
=

1

ZC

(
fx
fy

)(
XC

YC

)
+

(
Cx

Cy

)
, (2.4)

where (Cx, Cy) are principle point in x and y axes, since the CS’s origin is often set on the
upper-left in practice.

In addition, the imaging process is done with an image sensor, e. g. a charge-coupled device
(CCD). The image plane on the sensor is often originated on the upper-left instead of the
principal point, and measures lengths in pixels. Therefore, the 2.4 can be further transformed
as (

u

v

)
=

(
1
dx
1
dy

)(
x

y

)
. (2.5)

2 Fundamentals 10

ex

ey(CS)I

(CS)C

ey

ex

ez

ey

ex

ez

(CS)F ey

ex

ez

(CS)0

Image plane

Focal plane

Camera

World

0TC

FTI

P

Figure 2.3: The relationship between the world, local (camera), focal-plane and image-plane
coordinate systems. Notice that the image plane is denoted with a 2-D coordinate
system, because the final image is projected into the 2-D plane.

The whole process can be summarized in homogeneous matrices as

ZC

 u

v

1

 =

1
dx

0 u0
0 1

dy
v0

0 0 1

 fx 0 0 0

0 fy 0 0

0 0 1 0

(R t

0T 1

)
X0

Y0
Z0

1

 , (2.6)

where u0 = 1
dx
Cx, represents the principle point on the sensor plane, and the same goes to

the v0.

2.1.3 Triangulation with Epipolar Geometry

As introduced in Subsec 2.1.2, the information regarding the depth (Z) dimension is lost in
the process of projection. In order to recover the target 3D position in the world CS from the

2 Fundamentals 11

2D image plane, more than one projections (i. e. image planes) are needed. This is referred
to as triangulation.

The focus of these lecture notes is to show how having knowledge of geom-
etry when multiple cameras are present can be extremely helpful. Specifically,
we will first focus on defining the geometry involved in two viewpoints and
then present how this geometry can aid in further understanding the world
around us.

2 Epipolar Geometry

Figure 2: The general setup of epipolar geometry. The gray region is the
epipolar plane. The orange line is the baseline, while the two blue lines are
the epipolar lines.

Often in multiple view geometry, there are interesting relationships be-
tween the multiple cameras, a 3D point, and that point’s projections in each
of the camera’s image plane. The geometry that relates the cameras, points
in 3D, and the corresponding observations is referred to as the epipolar
geometry of a stereo pair.

As illustrated in Figure 2, the standard epipolar geometry setup involves
two cameras observing the same 3D point P , whose projection in each of
the image planes is located at p and p0 respectively. The camera centers
are located at O1 and O2, and the line between them is referred to as the
baseline. We call the plane defined by the two camera centers and P the
epipolar plane. The locations of where the baseline intersects the two image

2

P

p p'

e'e
O O'

Figure 2.4: The epipolar geometry [HS17]. Two observers’ origins are denoted by O and
O′, and the target is P . The light rays between O − P and O − P ′ intersect with
their respective focal planes at point p and p, while the line OO′ intersect on their
focal planes at e and e′ respectively. The ep and e′p′ are epipolar lines while the
OO′ is the base line.

Fig. 2.4 shows the ideal case of triangulation, where two cameras (a stereo camera set)
construct two pinhole models respectively. The ray of light coming from the world point
P will go through their focal points O and O′, and the projections on the respective image
planes land at points p and p′. The two lines defined by O p and O p′ will intersect at point
P , whose 3D position can be derived through these constraints.

However, the practical situation is far more complicated than the ideal case mainly in
following aspects:

• The inherent distortion resulting from the make the projected point inaccurate;

• The imaging process in a digital camera measures in a discrete unit, so are the pixel in-
tensity values. Therefore, the reconstruction through interpolation leads to inaccuracy;

• When matching yl and yr by extracted features (e. g. Harris corner [HS88] and ORB
feature [Rub+11]), the local region instead a single point is used, which also leads to
inaccuracy.

Therefore, more than a pair of points are needed to reduce the error if one intends to solve
the problem traditionally by linear algebra, e. g. Five-Point algorithm [Nis04] which utilizes
at least five matched features to produce reliable estimates.

2 Fundamentals 12

In order enable these traditional methods, there has to be enough matched feature points.
This becomes a potential shortcoming when it comes to a highly dynamic scene, or the object
area contains a large texture-less region with scarce features to be found. However, this
property turns into an advantage, when the scene is good enough to provide valid feature
matches. Therefore, the current DL-based methods would always actively add geometric
constraints to enhance the robustness of the model.

The DL-based methods used in this work is elaborated in Section 3.3.

2.1.4 Image Inverse Warping

The image warping, including forward and inverse warping, is essentially how to obtain
an image from the other image through a certain transformation. This section will use the
forward one as a transition to better illustrate the inverse one.

The affine transformation T (θ) includes rotation, translation, scaling, mirroring, and sheering
an image. Since 2-D projection of the 3-D coordinates loses the depth dimension, the image
is denoted as I(x, y), and the transformation T (θ) working on each pixel coordinate from
source/input (xs, ys) to target/output (xt, yt) image can be defined as

(
xt
yt

)
=

[
θ11 θ12 θ13
θ21 θ22 θ23

] xs
ys
1

=

[
a b

c d

](
xs
ys

)
+

(
e

f

)
. (2.7)

Specifically, the second row of the equation above is the decomposition of the T (θ) regarding
its effect: The parameters (e, f) controls the translation, while the other parameters can
define rotation, sheering, mirroring and scaling.

As the figure shows, the forward warping copies each pixel value at position (x, y) to the
position (x′, y′) (with interpolation, if the target coordinates are not integers). In other words,
the forward warping finds corresponding positions on the target image for source coordinates.

The inverse warping, on the contrary, utilizes the inverse transformation T−1(θ) to match
a corresponding source coordinates for each target coordinate. And then the Is pixels are
copied to I t as in forward warping.

2 Fundamentals 13

However, the transformation T−1(θ) could result in float-point coordinates while a digital
image is defined in integer coordinates (i. e. the grid), the matched points needs re-sampling
to be integers.

The mechanism of any sampling/interpolation method is to calculate the weighted-sum the
values in the local/neighbor region around the target position to estimate the possible value
in that position. The common choices for 2-D data are nearest-neighbor, bilinear, Gaussian,
etc. The choice is about the trade-off between computation cost (i. e. speed) and accuracy. In
this work, the bilinear sampling is chosen to perform the re-sampling (the application is in
Section 3.3).

a

b

(i, j) (i+1, j)

(i+1, j+1)(i, j+1)

(x, y)

Figure 2.5: Illustration of bilinear interpolation. The distances (a, b) to the nearest pixel
coordinates are less than the unit length.

The bilinear sampling in a 2-D scenario, as Fig. 2.5 illustrates, takes all four vertices of
the grid unit around the target position. The weight, i. e. contribution of each vertex to the
final result, depends on the distance in between. The calculation of the sampled value is as
follows:

f(x, y) = (1− di) · (1− dj) · f(i, j)

+ di · (1− dj) · f(i+ 1, j)

+ di · dj · f(i+ 1, j + 1)

+ (1− di) · dj · f(i, j + 1), (2.8)

where (i, j) and its alike are the pixel coordinates for the source image, their unit is the pixel
size; di and dj is the sub-pixel distance between two directions: di = x− i, and dj = y − j.

To conclude, the inverse warping use the inverse transformation T−1(θ) to: 1) construct
mapping each coordinate of the target back to the source coordinate, 2) sample the source
image to get the pixel value, 3) and copy the sampled value to the target coordinate.

2 Fundamentals 14

2.2 Deep Learning Basics

In this section, the construction of the convolutional neural network and residual network
will be introduced.

2.2.1 Convolutional Neural Network

In the field of DL-based computer vision (CV), the convolutional neural network (CNN) has
proven to be exceptionally effective since the success of the AlexNet model proposed in 2012
[KSH12]. This subsection will cover the basic components of a CNN.

A CNN usually consists of four major components: input image, convolutional layer, pooling
layer and fully-connected layer.

Input layer

The input layer is, by name, the input for a CNN, which is usually an image. Since an
image can be represented by one or more channels, e. g. a colored image can be expressed
in red, green and blue (RGB) channels, the dimension of an input image is height(Himg),
width(Wimg) and depth (Cimg, channel number). And a depth map has only one channel
(Cimg = 1) and each pixel value represents the actual depth value in physical world.

Convolutional layer

The core of a CNN is the convolutional layer. It is a set of convolution kernel/filters. To
explain its function, the more general form of 1D convolution is given here. Denoted by ∗,
the 1-D convolution in general can be mathematically expressed as follows:

s(x) = f(x) ∗ g(x) =

∫ ∞
−∞

f(τ)g(x− τ)dτ, (2.9)

where s, f and g stand for the output, target input and the filter respectively, while x and τ
can be interpreted as a global position in an input and a local offset in filter.The∞ implies
this filter has an infinite range. When it comes to real-world CV application where 2-D

2 Fundamentals 15

discrete form is used, the Eq. 2.9 can be expressed as follows:

s(i, j) = (f ∗ g)(i, j) =
∑
m,n

f(m,n)g(i−m, j − n). (2.10)

As shown in Fig. 2.6, f and g, stand for input image with the size of (Himg,Wimg) on the
bottom, and the convolutional filter with the size of (Hconv,Wconv) on the top. Specifically,
for each coordinate (i, j) in f , the whole filter g takes out a patch from f centered at (i, j)

in the same size, and calculates the sum of product, which results in one value s(i, j). The
filter will similarly scans through each position in f to produce the final output s. Since the
elements in a kernel are called weights, the core operation in convolution is weighted sum of
weights and original pixel intensities.

A convolutional layer consists of a certain number of 3-D convolutional kernels. It has the
following dimensions to be marked:

• height and width, namely (Hconv,Wconv) as mentioned above;

• depth/channel number (for an individual kernel). It should be the same as the input
channel number. For example, a RGB-image will be processed with a kernel with size
of (Hconv,Wconv, Cin = 3). Since it is implicitly determined by its input dimension, it
is not a necessity to be stated in definition, e. g. as in Tensorflow.

• output dimension, denoted by Cout. This is solely determined by the number of kernels
in this layer. Combined with the previous point, it can be derived that the channel
number of the output in this layer will determine the depth of convolutional kernels in
the next layer.

To summarize, the dimension of a convolutional layer is defined as (Cin, Hconv,Wconv, Cout).
Moreover, the process of weighted sum can be interpreted as feature extractor, because
the choice of kernel weights will emphasize (and omitted) certain information in the input.
Therefore, the output of a convolutional layer is often referred to as the feature map.

Pooling Layer

The pooling layer serves to extract or filter useful information from the output of convolutional
layer, therefore it often reduces the size of feature maps. There are many choices of pooling,
but they can be categorized concerning its mechanism into two types:

2 Fundamentals 16

Wimg

Himg

Cimg
Hconv, Wconv

Cimg

Wout

Figure 2.6: Visualization of a simple convolution. From symbol * denotes the convolution
operation. In this example, an image with dimension (Wimg,Himg,Cimg) is convo-
luted with a convolutional kernel with the dimension (Wconv, Hconv, Cimg). Notice
that channel number C of each kernel must equal the image’s, namely Cimg=3 in
this example). The kernel will slide with a certain step size (in this example, 1)
to traverse the whole image. The resulting output is called feature map with size
of (Wconv, Hconv, Dconv). The Dconv is the amount of the kernels (not shown here
for simplicity), and in this example the there is only one kernel

.

• selecting: Within the pooling are (could be local or global), it selects a representative
element as result. The mostly used one is the max pooling, which simply chooses the
largest the number for output.

• merging: Opposed the selecting a single element, the merging type utilizes the whole
area. The average pooling is the most common choice.

The max-pooling is more associated with the extraction of low-dimensional features, while
the merging pooling is more often used to extract high-dimensional ones, which contains the
so-called semantic information.

In practice, the kernel number used in a convolutional layer will be increased, leading to a
larger number (deeper) of channels, while the size of (Hconv,Wconv) gets smaller and smaller
with pooling layers. To summarize, the original low-dimensional features will be eventually
extracted in depth-dimension as semantic information.

2 Fundamentals 17

Fully-Connected Layer

The fully-connected (FC) layers are often arranged as the head of a CNN, where the high-
dimensional semantic features are ready for downstream tasks, e. g. classification, detection,
localization, etc.

2.2.2 Residual Network

As introduced in Section 2.2.1, the usage of stacked convolutional layers is intended to extract
deeper semantic information out of image data. However, it was observed in practice, that
overly cascading the convolutional layers will eventually make it difficult for the model to
converge.

To tackle this problem, HE ET AL. (2016) [He+16] proposed the a new unit structure to
construct neural networks, the so-called the Residual Block (ResBlock), and a neural network
built based on ResBlocks is called the Residual Network (ResNet).

Residual Block

Conv layer

Conv layer

+

x

F(x)

F(x) + x

H(x)

Figure 2.7: The basic structure of a residual unit. The input (x) takes two paths simultane-
ously: one will go through convolutional layers, while the other path let the x
be directly added to the output of the previous path F (x), which makes the final
output H(x) = F (x) + x. The other auxiliary operations of the convolutional
layer, e. g. activation, is not shown here for simplicity.

2 Fundamentals 18

To define how a ResBlock works, it is more understandable when compared with normal
flow of a CNN. As the Fig. 2.7 describes, if the input is defined as x and all operations
inside CNN as F , the output H(x) will be H(x) = F (x). However, in a ResBlock, the
identity of x takes a shortcut and is added to the output of the CNN, making the overall
outputH(x) = F (x) + x.

Although the operations in CNN are the same, the learning target is not F (x) = H(x)

anymore, but F (x) = H(x)−x. This is also the reason that it is called the Residual Block.

3×3, 64

3×3, 64

relu

+

64-d

relu

(a) double-layer residual unit

1×1, 64

3×3, 64

relu

256-d

1×1, 256

+

relu

relu

(b) triple-layer residual unit

Figure 2.8: The illustration of double-layer (a) and triple-layer residual unit (b), respectively.
The triple-layer structure is to reduce the parameters of the convolutional layer.

There are generally two types of ResBlock categorized by layer number, namely double- and
triple-layer structure. As Fig. 2.8 displays, the trick lies in the first and last convolutional
layer, where the channel is decreased from 256 to 64, and increased back to 256 to match the
channel number of the identity. The intention here is to reduce the parameter number and
thereby the computation, specifically in this example:

• For the double-layer ResBlock, the total number of parameters is 2× (3× 3× 256×
256) = 1.18e6.

• For the triple one, the number is 1×1×256×64+3×3×64×64+1×1×64×256 =

69, 632.

The double-layer ResBlock is often used in shallower ResNet (e. g. ResNet-18 and ResNet-

2 Fundamentals 19

34), while the latter is often used in deeper ResNet (e. g. ResNet-101 and ResNet-152). There
are many variants for the sequence of ReLU activation [NH10] and Batch Normalization
[IS15] relative to the convolutional layers.

Formulation of a Residual Network

A ResNet is, in short, the cascading of the ResBlocks. The construction pattern can be
summarized into three parts in order:

1. first convolutional layer and max-pooling for low-dimensional features;

2. Repetition of ResBlocks. The parameters in brackets describe one specific ResBlock,
where ×N defines the number of cascading of this kind of ResBlock.

3. average-pooling, FC layer and softmax is for the downstream task, e. g. object detection.
They are often referred to as the top.

The Fig. 2.9 is an example of the first few layers of ResNet-34. Specifically, "/2" stands
for downsample operation that shrinks the input feature map to the half of its original size.
They can be achieved with a (1× 1) convolutional kernel with stride of 2. In addition, the
dashed arrow means that there will be an operation to adjust channel dimension to make the
input-identity’s channel matches the output’s.

7x7,
64

pool,
/2

3×3,
64

3×3,
64

3×3,
64

3×3,
64

3×3,
64

3×3,
128,
/2

3×3,
128

pool,
/2

3×3,
64

x

Figure 2.9: The first ten layers of ResNet-34: Except that the 2nd layer is pooling, the rest
are all convolutional layers. For each cell, the first row (N×N) denotes the kernel
size, the second is the kernel number, and the third row is the down-sampling by
the factor of 0.5. The arrow stands for the residual connection (as in Fig. 2.8).
The dashed-arrow indicates an operation to adjust channel dimension to make
the input-identity’s channel matches the output’s.

The naming of the ResNet-X (X referred to as the ResNets’s depth) is based on the number

2 Fundamentals 20

of important convolutional layers. Taking ResNet-34 as an example (see Table 2.1 for its
composition), the following components define the ResNet’s depth:

• the first convolutional layer with 7× 7 kernel;

• the 2× (3 + 4 + 6 + 3) = 32 (each block has two) layers in the main structure;

• the final FC layers.

The 34 key layers mentioned above form the ResNet-34. Notice that the downsample-
convolutional layers are not counted here.

Table 2.1: Illustration of ResNet construction using ResNet-34 as example. Each row corre-
sponds to a block, and the last column parameterizes the convolutional layer. For
example, the conv3.x block is composed of four repetition of two convolutional
layers with identical kernel shape of (Cin, H = 3,W = 3, Cout = 256).

block index output size 34-layer

conv1 112× 112 7× 7, 64, stride=2

conv2.x 56× 56
3× 3, max pool, stride=2[

3× 3, 64

3× 3, 64

]
× 3

conv3.x 28× 28

[
3× 3, 128

3× 3, 128

]
× 4

conv4.x 14× 14

[
3× 3, 256

3× 3, 256

]
× 6

conv5.x 7× 7

[
3× 3, 512

3× 3, 512

]
× 3

1× 1 average pool, 1000-D FC, softmax

2.3 Visual Object Recognition

Visual object recognition includes object detection for single images and tracking across
time. The following subsections will focus on these two domains.

2 Fundamentals 21

2.3.1 Object Detection

Object detection (OD) is the most representative application for CNNs. The detection here is
ambiguous, because the modern OD models are often expected to achieve at least one of the
following goals:

• Decision on the presence of a specified target, along with the confidence on the
decision;

• Classification;

• Localization of the object, often by a rectangle (better known as the bounding box or
BBox).A more advanced localization task is to generate a segmentation mask, e. g. in
Mask R-CNN [He+18], which produces a mask that covers the actual shape of the
object.

In general, there are two major phases in the workflow of a detector. For starters, the (CNN-
based) backbone network, e. g. ResNet [He+16], VGG [SZ15], serves to extract feature maps
from raw image data. Afterwards, these feature maps will be further processed to achieve
specific tasks. According to how to design the latter part, the OD can be categorized into
one-stage and two-stage detection.

For a one-stage detector, the extracted features will be directly used as the input of final FC
layers, so that the goals like BBox-coordinates are regressed. These FC layers are also called
the head. The representative algorithms are YOLO series (e. g. YOLOv4 [BWL20]) and
Single-Shot Detector (SSD [Liu+16]).

For two-stage detectors, an additional module, e. g. Region Proposal Network (RPN) in
Faster-RCNN [Gir15], will be inserted after the backbone. The purpose here is to propose
preliminary regions of interest (ROIs). The ROIs will be pooled (or aligned, in later Mask R-
CNN algorithm [He+18]), in order to extract fixed-length feature vectors for later FC-layers.

The process of proposing ROIs can be understood as a special kind of sliding-window
approach. For each point in the feature map, several anchor rectangles (windows) are applied
to outline the local patch. Afterwards, a classifier will make a rough decision on whether
the patch contains the target class(es), while a BBox-regression layer will determine a rough
region that encloses the object. The resulting BBoxes are applied to the image to crop out
regions of interest (ROIs). The famous example is the RCNN family, including R-CNN
[Gir+14], Fast R-CNN [Gir15], Faster RCNN [Ren+17] and Mask R-CNN [He+18].

2 Fundamentals 22

The ROI-proposal mechanism in two-stage detectors shows advantages in terms of precision
and ability to detect objects with a small size relative to the full image. However, the point-
by-point proposing leads to much slower running speed compared to the one-stage detectors,
which makes it impossible for real-time application.

2.3.2 Object Tracking

Object tracking determines the same identity across a series of single frames, which enables
processing in temporal order and bridges the gap between object-wise detection results and
image-wise depth map estimates. The object tracking includes single-object (SOT) and
multi-object tracking (MOT). MOT is required in this work, since we need track each object
of interest on sight. For the completeness, SOT is introduced at first.

Single Object Tracking

Single-object tracking (SOT) across consecutive frames is the most basic tracking task.
Typically, the task is to find the region in a new/target image, given a patch image as the
template. Early on, this was treated as a correlation problem.

Thanks to the rapid development in DL, numerous neural-network-based SOT trackers have
become leading roles at least in academic fields. Instead of using conventional methods
that focus more on low-dimension features (e. g., pixel-level) correlation, NN models (e. g.
the SiamRPN [Li+18]) utilize CNNs to extract higher-dimension features from a template
and target frame for comparison. In this way, useful features are implicitly learnt as each
convolutional kernels are updated through the back-propagation method (by RUMELHART

ET AL. in 1986 [RHW86]) in the training stage.

DL-trackers generally tend to manifest higher precision when the applied scenarios are
similar to the training stage. Since CNNs don’t rely on hand-crafted features, they could
adapt to more scenes, as long as the supervision is provided.

However, they have generally following shortcomings, such as:

• Their performance tends to deteriorate when the object has more shifts in orientation
and size.

• The inference speed relies on the hardware, e. g. GPU, while conventional ones could

2 Fundamentals 23

almost run at any modern CPU.

Note that the discussion on SOT here is for completeness. Since this work focuses on
Multi-Object Tracking (MOT), a very different subject than SOT, there will be no further
discussion on SOT.

Multi-Object Tracking

Multi-Object tracking (MOT) intends to keep track of multiple targets across different frames.
The difficulty here lies in the mechanism of re-identification (Re-ID), i. e., to re-recognize
multiple targets in different images and distinguish between their identities. MOT can be
categorized into two types:

• Detection-based tracking, or tracking-by-detection (TBD). The trackers rely on the
detected results (often in the form of BBox) to perform Re-ID. This style is more
practical, because the detectors not only produce more precise BBox but also respond
immediately when the object is missing (i. e., a failure report).

• Detection-free tracking. Automatically tracking multiple targets with one single
initialization on the first frame. This is how most of the conventional SOT tracker
(MOSSE [Bol+10], KCF [Hen+15], etc.) functions. This method fails to perform
self-correction in time when, e. g. the object’s size changes fast on the image., or even
disappears.

One of the most classic TBD-trackers is the DeepSort algorithm presented by WOJKE ET AL.
(2017). [WBP17]It establishes the modern TBD framework, which decomposes the task into
detection, feature encoding, data association and updating. Generally for each frame:

1. The detected BBoxes are generated by the specified detector. The images will be
cropped out as patches by BBoxes, each containing a target.

2. The patches are fed to a feature extractor (FE) to generate a feature vector.

3. The BBoxes and feature vectors, together denoted as Detections, will be used to
match with previously recognized objects. If no match found, it would be treated as a
newcomer and assigned with a new identity.

Different algorithms handle the above-mentioned procedure differently. For DeepSort, the
framework is mainly conventional, since it matches the movement of BBoxes by Mahalanobis

2 Fundamentals 24

distance, and feature vectors by cosine distance. The only DL-based components here are the
off-the-shelf detector and FE. A more recent milestone, the FairMot presented by ZHANG ET

AL. (2020) [Zha+20], constructs an end-to-end learning task to regress the identity directly.

In this paper, DeepSort is chosen because of its excellent flexibility of self-defining detector
and feature extractor, as well as possibilities to extension/enhancement. More details are in
Section 5.1.

Matching Metrics Used in DeepSort

One of the core operations in tracking is to match between previously tracked identities
and newly detected ones, also known as data association. This work involves three metrics,
namely Mahalanobis distance, cosine distance, intersection over union (IOU) or distance-
IOU, which will be used in different matching tasks.

When it comes to positional and geometric distance/dissimilarity, the Euclidean distance
(Eq. 2.19) is often used. However, for multi-dimensional data, there could be differences
regarding unit-scale and variance between dimensions.

For example, for vectors xi = (ai, bi)
T, where i is the index, ai and bi have the unit [m]

and [Pa] respectively, simply calculating the sum of squared difference will overlook their
unit and variance. Therefore, a transformation beforehand is needed, which brings the
Mahalanobis distance (dmah) defined as:

dmah(x,y) =

√
(x− y)TS−1(x− y), (2.11)

where x and y are two vectors standing for new observation and previous states respectively.
They are assumed to follow the same distribution with covariance matrix S. The Mahalanobis
distance generalizes the multi-dimensional data to be unitless and scale-invariant, and S also
helps take the possible correlation between dimensions into account.

Cosine distance, on the other hand, is to measure the similarity between vectors. It is
known that a NN will map the input (e. g. an image) into feature maps/vectors. The values
in a feature vector has no physical unit, and an individual value can hardly represent any
meaningful information. Therefore, the relative divergence between two vectors is calculated

2 Fundamentals 25

through their included angles. The cosine distance (dcos) is defined as follows:

dcos(x,y) = 1− cos(x,y), (2.12)

cos(x,y) =
x · y
‖x‖ · ‖y‖ . (2.13)

Since output of cos(·) ranges [−1, 1], the cosine distance dcos value ranges [0, 2].

The intersection over union (IOU) is dedicated to measuring the relative position, or intersec-
tion extent, between two rectangles (BBoxes). As the Figure presents, the IOU by name is
the ratio of intersection area to united area. Define the two rectangles (i. e. the areas they
cover) as A and B, the IOU is expressed as:

IOU =
A ∩B
A ∪B. (2.14)

dα

d
β

A

B

+ +

A∩B

close{A, B}=

A∪B=

Figure 2.10: The scheme of the components for distance-intersection-over-union (D-IOU)
calculation. Besides the traditional IOU, D-IOU additionally takes the following
factors into account: 1) the relative distance dα; 2) relative scale dα

dβ
, 3) minimum

closure area denoted by close{A, B} in the figure.

However, the major flaws of IOU are:

• It will always equal zero (the minimum value) when there is no intersection, making
it impossible to distinguish the relative dissimilarity once BBoxes are no longer
intersected.

2 Fundamentals 26

• It will always equal one ((the maximum value) when two BBoxes fully intersects.
This does not take the geometric characteristics into account, e. g. the BBox size and
orientation.

Therefore, an improved metric based on the IOU, namely the distance-IOU (DIOU) is
developed. It is defined as above:

DIOU = IOU− d2α
d2β
, (2.15)

where dα is the Euclidean distance between the center of the two BBoxes A and B, while dα
is the diagonal length of their minimum closure area. The Fig. 2.10 illustrates the mechanism:
The extra portion d2α/d

2
β punishes dissimilarity in geometric characteristics and their relative

position.

2.4 Motion Estimation

Motion estimation includes two aspects: the egomotion (the camera’s movement) and the
motion of targets relative to the camera. Also, the classic method Kalman Filter [Kal60] to
derive motion is presented in the last subsection.

2.4.1 Egomotion Estimation

To estimate the motion of a target relative to the observer, the observer’s movement, often
referred to as egomotion, should also be considered. For static observation, e. g. the traffic
surveillance, there is not egomotion involved. This work, however, focuses on dynamic
scenes where the camera is on a moving vehicle.

In the process of driving, the camera moves in a 3-D space with six degrees of freedom,
which includes translation along and rotations around x, y and z axes, respectively (as
introduced in Section 2.1.1). In addition, as Fig. 2.11 depicts, the rotation angles around
lateral, longitudinal and vertical axes are also often referred to as pitch, roll and yaw angles,
respectively.

Since the camera is taking images in a temporal sequence, the egomotion could be theoreti-
cally derived by comparing neighbor images.

2 Fundamentals 27

Roll

Yaw

Pitch

Figure 2.11: Illustration of the 3-D movement with six degrees of freedom. For each axis,
i. e. roll, yaw and pitch, there are translation and rotation movement.

A common pipeline for conventional methods is

1. detect the feature points on two neighbor frames. The typical choices of hand-crafted
features include ORB[Rub+11], SIFT [Low99], etc.

2. match the hand-crafted feature between two frames and localize their pixel coordinates.

3. given camera’s intrinsic parameters, the egomotion can be estimated using geometric
constraints using relevant algorithms.

To be specific, egomotion is traditionally solved by utilizing constraints based on epipolar
geometry (introduced in Section 2.1.3). A typical choice is the Five Point algorithm [Nis04],
which takes at least five points (and camera intrinsic parameters) to estimate the essential
matrix. The essential matrix can then be decomposed into rotation and translation matrix.
Note that the translation here is merely up to scale, since the monocular projection will lose
depth information.

Since these algorithms use merely geometric constraints by positions of matched points
between two images, feature-point matching is of vital importance. In practice, the more
accurately matched point pairs are provided, the better the estimation will be. This demand
is challenging to be met, since the quality of visual-based methods is subject to the following
defects:

• The blurring effect caused by movement. Since the shutter speed is often not fast

2 Fundamentals 28

enough compared to the car’s movement, the exposure will capture visual information
for a relatively long period.

• The pixel noises caused by an environment with awful conditions, e. g. in a dim
weather. Because the visual sensor can only differentiate lighting intensity in a limited
range.

• Certain circumstances are not suitable for feature matching, e. g. a scene where few
texture exits, such as the cloudless sky.

Therefore, this method will be robust only when the image sequences are taken in a less
dynamic scene rather than in a moving car. Moreover, there is no valid failure report for
feature matching, making it more difficult to determine how many matches can be used. Last
but not least, the calculation of hand-crafted features requires certain amount of time, e. g.
with an Intel® Core™ i7 Processors (7th Gen) the processing speed is only about 30 frames
per second (FPS).

With the above-mentioned reasons considered, the conventional methods of egomotion
estimation are not used. Furthermore, since the ultimate goal is to estimate the motion of the
targets (instead of the ego vehicle), we argue that an explicit egomotion estimation should
not be a part of the inference pipeline. In Section 3.3, an auxiliary NN for egomotion will be
introduced, which is only utilized during the training of the NN for depth estimation.

2.4.2 Distance and Velocity Estimation

The physical definition of distance: Place the origin of the (Cartesian) coordinate system at
the observer, the distance to an object is often defined as the Euclidean distance. Given the
coordinate (x0, y0, z0) of the target A, the distance/depth d0 to the observer (the origin) is
calculated by:

d0 =
√
x21 + y21 + z21 . (2.16)

The projection magnitudes, x0, y0, z0 also clarify the distance in respective directions. Note
that this work will not involve movements in the vertical direction (z0), thereby only depth,
and 2-D distance in longitudinal and lateral directions denoted as dx and dy, will be consid-
ered.

2 Fundamentals 29

In a 2-D planar coordinate system, the Eq. 2.16 is simplified to following connections:

d0 =
√
x21 + y21, (2.17)

x0 = d · cos(θ), (2.18)

y0 = d · sin(θ), (2.19)

where θ is defined as the angle between the vector (x0, y0)
T and x axes, thereby θ =

arctan2(y0, x0). Therefore, the 2-D distance can be derived with depth, as long as the angle
θ can be estimated.

The depth can also be connected to the disparity in stereo vision. For two cameras, like
human eyes, the position of a target will appear at a slightly different position (in horizontal
direction). The farther the target is, the less noticeable the difference becomes. And such
difference is referred to as the disparity. For a stereo camera set, the disparity, denoted as
disp, is defined as

disp =
f · b
d · ps

, (2.20)

where f is the focal length; b stands for baseline length, e. g. the length between two cameras;
ps is the pixel size. Many networks estimate the disp as the output and derive the depth by
scaling the reciprocal, since disp ∝ 1

d
.

To avoid confusion between depth d and its 2-D projections dx and dy, we will clearly state
the 2-D distance projections as 2-D distance. Otherwise, d stands for Euclidean distance or
its general concept regardless of dimension.

Distance is the integral of velocity over time, namely d =
∫
v · dt. Although the velocity can

be continuously changing, but in a real-world application, we often take a short period unit
(e. g. 0.1 second), within which the velocity is presumed to be constant. This presumption is
based on the fact that there would not be abrupt velocity change within that time because of
the inertia of a vehicle. Such discretization also simplifies analysis within a time interval to
compensate error of one single estimation.

As we analyze the video frame-wise, the concept of frame-rate is more often used than time
unit: Define frame-rate as frame-per-second (FPS in [s−1]), the relationship between distance

2 Fundamentals 30

change ∆d in [m] and velocity in [m · s−1] can be expressed as:

v = ∆d · FPS, (2.21)

where velocity here is, as mentioned above, presumed to be constant within at least each
frame; and ∆d is the distance change taking place between two frames. In other words, the
velocity estimation can be derived during frame-wise distance estimation (within known
frame interval).

2.4.3 Kalman Filter

Kalman Filter (KF) in essence serves to fuse data from multiple sources to optimize the
measurement. An example is: Estimate a car’s motion state by utilizing multiple sensors
(e. g. depth sensors, visual sensor, inertial sensors, etc.). The KF will take their inaccuracy
(noise) into account to model the motion and continuously update the model with ongoing
measurement. In this work, the motion state includes only the distance and its derivative with
time (i. e. velocity), so the acceleration will not be considered.

In short, the KF will firstly predict the next state depending on the previous knowledge, and
the new observation will be utilized to optimize the raw prediction and give the final estimate
of the motion state. The following is the main procedure of how KF predict-and-correct
to optimize the state. Note that all the symbols used in this section will not occur in other
sections unless specified otherwise.

To begin with, the motion at time step t (xt) is predicted by the previous step xt−1, namely
the prior prediction calculated as Eq. 2.22. In the meanwhile, new measurement zt of the
current status xt arrives, expressed in Eq. 2.23.

xt = F txt−1 +Btut + ωt, (2.22)

zt = Htxt + vt, (2.23)

where

• Bt and ut is the control matrix and movement measurement of the target. Together,
they measure how the target is steered, e. g. how far do the four wheels travel respec-
tively. As there is no measurement for the camera’s motion in this work, we will omit

2 Fundamentals 31

this part afterwards.

• F t is the state transformation matrix, which describes how the target’s state is trans-
formed from time-step t− 1 to t. The parameters for the state x is self-defined. In this
work, we model the distance and velocity, namely (dx, dy, vx, vy). But for simplicity
of the introduction in this section, we refer the motion as xt = (xt, ẋt)

• ωt is the process noise that reflects prediction inaccuracy caused by non-linearity of
the system, with covariance denoted byQt.

• zt is the measurement from the sensors, while Ht is the transformation matrix that
maps the zt to the same unit as the xt, e. g. from millimeter to meter.

• vt is the noise in measurement with covariance Rt, reflecting the inaccuracy of the
sensor reading.

The prediction result of a variable at t based on t− 1 is expressed with the subscript: t|t− 1.
For example xt|t−1 stands for the raw prediction of the xt based on the final estimate of x at
time t− 1. In addition, the inter-connection inside the state parameters are represented by
the covariance P :

x̂t|t−1 = F t x̂t−1, (2.24)

P t|t−1 = F tP tF
T
t +Qt. (2.25)

It is obvious that the process of prediction increase the uncertainty byQt because of motion-
measurement uncertainty is introduced.

Next, the measurement is taken to correct the raw prediction:

x̂t = x̂t|t−1 +Kt

(
zt −Ht x̂t|t−1

)
, (2.26)

Kt = P t|t−1H
T
t

(
HtP t|t−1H

T
t +Rt

)−1
, (2.27)

whereKt is called the Kalman gain during the correction step at time t.

When ignoring the transformation matrix H that just serves to adjust the unit, theK reflects
the relationship between P andR, namely the uncertainty from prediction and measurement
respectively, and K ∈ [0, 1]. Moreover, according to Eq. 2.26, the smaller measurement
uncertaintyR is, the more theK will approach 1, thereby the more will the new measurement
dominate the final estimation result.

2 Fundamentals 32

At last, the P t will be updated as the x has been updated from xt|t−1 to xt:

P t = P t|t−1 −KtHtP t|t−1. (2.28)

The corrected/updated variables with the subscript: t will be used for the next time step
t+ 1,which forms a predict-correct cycle.

33

3 Applied Algorithms

In this chapter, applied algorithms, including object detection, multi-object tracking, depth
map estimation, and object-wise motion estimation, will be introduced in sequence.

3.1 Object Detection with YOLOv4

YOLOv4, the fourth version of You-Only-Look-Once algorithm, is an one-stage object
detection algorithm that absorbs state-of-the-art ideas into its network design and training
strategy. It features high detection speed and achieves an outstanding trade-off between speed
and accuracy.

To present a thorough introduction, the section will be split into three parts: 1) the network
architecture; 2) post-processing and losses; 3) essential training tricks. In order to illustrates
in a top-down manner, the focus will be firstly placed in the main structure and skip single
convolutional blocks for clarity.

Network Architecture

As Fig. 3.1 shows, the YOLOv4 network consists of the following three parts: The backbone:
CSPDarknet53, the neck: SPP with PAN, and the head for three tasks (the predictions on
location, class and confidence).

The CSPDarknet53 combines Cross Stage Partial Network (CSPNet) and Darknet-53 back-
bone (without FC-layer). To begin with, the cross-stage-partial network (CSP, presented by
WANG ET AL. in 2020 [Wan+20]) is used, which lowers the computation cost and improves
the performance compared to a similar structure of traditional ResNet (for more details see
Appendix .1).

The concatenated CSP-units extract feature maps in a higher dimension, and each follows a
convolution with a step of 2 in the end, for down-sampling and expanding the receptive field.

3 Applied Algorithms 34

13×13

26×26

52×52

CSP-N

SPP

26×26

52×52

13×13

26×26

52×52

13×13×255

26×26×255

52×52×255

NMS

. . .

Backbone:
CSPDarknet53

Neck:
SPP+PANet

Head Post-
process

Input image
416×416×3 Final

output

Figure 3.1: The overall architecture of YOLOv4. The network is composed of the backbone:
CSPDarknet53; the neck: spatial pooling pyramid (SPP) and path-aggregation
network (PANet); the head; and Non-Maximum Suppression (NMS) as post-
processing method.

In addition, the last two CSP units will copy its output to the following neck structure, which
allows information fusion in multiple dimensions.

The neck is formed by the combination of Spatial Pyramid Pooling (SPP), and the combined
structure of Feature Pyramid Network (FPN) and Path Aggregation (PA) method:

• As Fig. 3.2 demonstrates, the SPP takes the output of CSPDarknet53 and branches into
copies, which pass max-pool operation with kernel size of (1, 1), (5, 5), (9, 9), (13, 13),
respectively. Afterwards, they are concatenated again as one feature map.

• The PANet, i. e. the combined FPN-PA structure, enhance the multi-scale fusion
further.

– As shown in the left part of the Neck block in Fig. 3.1, the FPN, is a series of
top-down operations. It takes up-sampled the high-dimension output to merge
with lower-dimension features (intermediate output of the backbone).

– Afterwards, a series of bottom-up PA operations follows the structure shown in
the right part of the Neck in Fig. 3.1.This is a similar procedure to the FPN but in

3 Applied Algorithms 35

reversed order, i. e. the feature will be merged from low to high dimension.

The two components: SPP and PANet, enable the fusion of multi-scale features. Specifically,
the features at lower scale tend to carry more location and information because of their
limited receptive field, while the those at a higher scale carry more semantic information,
because they have the grasp of the global information.

Input

13

9

5

C
oncat

Multi-scale
Pooling

Figure 3.2: Scheme of spatial pyramid pooling (SPP). The input feature map is applied
with multiple pooling layers with different kernel sizes. The size of the kernel
determines the local area size to be pooled, e. g. a 13 (square) kernel will take
13× 13 grid units into account.

The heads of YOLOv4 are simply a series of convolutional blocks. Taking the three outputs
at different scales from the YOLOv4-neck, and generate the raw predictions (BBox coordi-
nates, classification and confidence) respectively. Take an image with shape (416, 416, 3)

as an example: the resulting size of the three heads will be (13, 13), (26, 26) and (52, 52)

respectively. The channels of the outputs correspond to the dimension of the one prediction:
4 + 1 + Nclass, where 4 is the dimension of a BBox coordinate, 1 is the confidence, and
+Nclass is the total number of class options. The official code is trained on COCO dataset
with 80 classes, which makes the output shapes (13, 13, 85), (26, 26, 85) and (52, 52, 85),
respectively. As result, the amount of raw predictions are 132 + 262 + 522 = 3549

Post-processing and Losses

The post-processing, including 1) proposing triple boxes by anchors and 2) Non-Maximum
Suppression (NMS, presented by J. CANNY in 1986 [Can86]), will produce the final predic-
tions. The losses will be calculated based on the prediction errors, which will then be used to

3 Applied Algorithms 36

back-propagate to update the weights.

The outputs at three scales of the YOLOv4 heads are merely raw proposals. Each pre-
diction will be multiplied with three anchors to generate final proposals, which triples
BBox-predictions in one location. As Fig. 3.3 demonstrates, the anchors are simply a set of
fixed rectangle sizes (width and height) that tend to fit the sizes of most of the objects in the
dataset. For example, the car should have a larger size in horizontal direction, while a person
should be of larger size in vertical direction.

Specifically, the anchor sizes are chosen by running K-Means algorithm [Llo82] on all labels
of the COCO dataset. The nine resulting anchor sizes are (10, 13), (16, 30), (33, 23), (30, 61),
(62, 45), (59, 119) (116, 90), (156, 198), (37, 326) in (width, height) manner.

(a)

anchor 1

anchor 2

anchor 3GT

(b)

Figure 3.3: The mechanism of the anchor box. (a) is an example of an image with ground-
truth boxes in yellow for the person and green for the car, respectively. Since two
objects overlap, it is difficult to estimate boxes with similar center points. The
anchor boxes with fixed aspect sizes help propose possible bounding boxes that
better enclose the object. (b) is an example of the anchor boxes generated at one
center point. The "anchor 2" fits the corresponding GT better than other anchor
boxes.

At this point, there are 3549× 3 = 10647 predictions, which will be filtered by NMS. The
NMS serves to: 1) directly delete the predictions with low scores; 2) only preserve the one
with the highest score among a group of overlapped BBoxes. Noticeably, the NMS utilizes
the Distance-IOU (DIOU [Zhe+19], introduced in Section 2.15), instead of traditional IOU,
to determine the overlapping/redundancy extent.

Afterwards, the losses will punish the errors regarding three aspects:

3 Applied Algorithms 37

• The BBox coordinate. CIOU-loss Lciou is chosen as the metric. Compared to DIOU,
the CIOU punishes the aspect-ratio error, which is defined as:

CIOU = DIOU− α · v, (3.1)

v =
4

π2

(
arctan2

(
wgt, hgt

)
− arctan2(w, h)

)2
, (3.2)

Lciou = 1− CIOU. (3.3)

• The classification correctness. It is defined by a binary cross-entropy loss Lcls for one
single prediction is:

Lcls = −
2∑
i=1

pi log (f (p̂i))

= −pi log (f (p̂i))− (1− pi) log (1− f (p̂i)) , (3.4)

where f(·) is the sigmoid function (Eq. .1); pi and p̂i are predicted and GT class
respectively.

• The confidence score pconf . This score indicates the existence probability of any
object, which ideally should equal 0 when there is no object inside the BBox (i. e. the
background), and 1 when there is a valid object. The object-confidence loss Lconf is
defined as:

Lconf = −pgtpos log (pconf)−
(
1− pgtpos

)
log (1− pconf) , (3.5)

where ppos is the GT binary value for the positive (has-object) instance.

Finally, the three losses, i. e. Lciou, Lcls and Lconf will be averaged prediction-wise to form
the final loss value.

Data Augmentation

Data augmentation is generally the operations that adjust and create new pseudo data based on
the raw data. It is only applied in the training phase to simulate more various scenarios than
the ones that original data could represent, and it is turned off in the testing/inference phase.
In the field of Computer Vision, the data augmentation manipulates images. Commonly there

3 Applied Algorithms 38

are:

• Changes in global representation: random scaling, cropping, flipping and rotation.

• The lighting condition adjustments, i. e. random adjustment on brightness, contrast,
hue, saturation and image noise (e. g. the Gaussian noise added to the original pixel
values).

• Randomly erasing regions (replacing pixel values with a constant) using GridMask
proposed by CHEN ET AL. in 2020 [Che+20a].

• Randomly merging different images into a new one, referred as Mosaic [BWL20].
Precisely, it resizes four images and puts them together like a jigsaw puzzle, which
significantly enriches the information compared to one raw image.

Data augmentation artificially increases the complexity of the image, helping the trained
model adapt to more complicated scenes in real world that are not represented by the training
set.

3.2 DeepSort Tracking

This work adopts DeepSort [WBP17] algorithm for multi-object tracking (MOT) which has
established a classic framework for the so-called tracking-by-detection style tracking.

It evolves from the predecessor, the Sort algorithm [Bew+16] which is the first to combine
Kalman Filter by R. E. KALMAN [Kal60] and Hungarian algorithm by KUHN AND YAW

[KY55]) to achieve fast inference speed (up to 260 Hz). The high speed benefits because
it solely utilizes IOU metric (i. e. geometric and location characteristics). However, such
simplicity makes it difficult to perform Re-ID in dynamic scenes, whose previous BBox will
deviate greatly from the current one. Neither is it capable of recovering a temporarily-lost
identity.

Therefore, the DeepSort enhances the Sort by taking the appearance information into account,
and applying more metrics for Re-ID task. In addition, the detection and appearance feature
extraction is achieved by a separate detector and feature extractor, which is independent
of the DeepSort structure. Since the object-detection algorithms have been introduced in
Section 2.3, this section will only cover the main structure of DeepSort and the feature
extractor.

3 Applied Algorithms 39

3.2.1 Tracking Pipeline

This section will firstly introduce the overall pipeline, and then offer a more detailed explana-
tion of its most crucial procedure, i. e. the cascade matching. The corresponding flowcharts
will be presented for better clarification.

Overall Structure

Fig. 3.4 describes how DeepSort functions in general, where The block area stands for a
procedure, and the rest is either a component or a status. Above the dashed line separates the
main workflow and working mechanism of individual Tracks.

Cascade
MatchingDetections IOU

Matching

Unmatched
Tracks

Unmatched
Detections

Matched
Tracks

Unconfirmed

Confirmed Max age?

Delete

Initiate
new Track

yes

KF predict

Tracks

no

Confirmed?

yes

Figure 3.4: The pipeline of DeepSort algorithm. Detections go through two-stage matching,
i. e. cascade and IOU matching. The Detections of new identities are used to
initiate new Track (and given with a unique ID-number). In turn, the previously
initiated Tracks will be used to match with new Detections. The matched Track
will be updated with the detected results, while the continuously unmatched
Track will expire after a specific time. Each Track contains the geometric and
appearance characteristics of the identity, represented by a BBox and a feature
vector respectively.

There are following critical components/concepts worth extra explanation, of which capital
letters are used for keywords to distinguish them from normal words:

3 Applied Algorithms 40

• Detection. This is a set of the results from the object detector and the feature extractor.
Specifically, the former provides the BBox coordinates, while the latter passes the
feature vector in a fixed dimension., e. g. 128.

• Track. Each Track carries the necessary information of one tracked identity. The
geometric and positional characteristics are modelled by a Kalman Filter (KF), while
the feature vectors will be simply stored as a list in temporal order. The KF param-
eterises each BBox by its center coordinates (cx, cy), aspect ratio ra, height h, and
their velocities respectively. So the full parameters are: (cx, cy, ra, h). For each new
time step, the KF will firstly predict by itself, giving an a-prior result of where the new
BBox could be. The result will be corrected by the actual measurement (the newly
detected BBox).

• (Un-) matched status. Matching takes place between a Track and a Detection. There
are feature and IOU matching in DeepSort, which take place between feature vectors
and BBoxes respectively. An unmatched Track means it cannot be matched with any
new Detection in this frame. And an unmatched detection is the other way around.

• (Un-) confirmed status. For a Track, a successful match in the current frame will be
marked as confirmed. And if a Track cannot find a match for certain successive frames,
it is considered to be lost (unconfirmed) and deleted. As for a KF, the unconfirmed
status is given in the initialization phase. Since KF is initialized with large variation
(of a Gaussian distribution, to be exact), it needs certain rounds of new measurements
to be stabilized.

The DeepSort algorithm can be summarized in the manner of how data flows inside the
algorithm:

1. Detections, including BBox and extracted features, are passed in.

2. The KF for each Track will predict at each step independently, giving an a-priori
prediction on the BBox characteristics, i. e. (cx, cy, ra, h).

3. In cascade matching, feature vectors in new Detections Detections and confirmed
Tracks generate a cost matrix. In the meanwhile, the Mahalanobis distance (dmah)
between new Detections and the Tracks. dmah here serves as a gating mechanism
for the feature-similarity cost matrix to exclude objects whose trajectories have gone
astray.

3 Applied Algorithms 41

4. The unmatched Tracks and Detections are then passed to the next round of matching,
i. e. IOU matching (Eq. 2.14). In this procedure, IOU metric measures how well the
BBoxes between Detections and Tracks match each other.

5. After two rounds of matching as above mentioned, the leftover Detections are deemed
to be new-comers, thus a new Track will be initiated according to its information
(BBox and feature vector). Notice that newly-initiated Track will be marked as
"Unconfirmed"/"Tentative", until it is continuously matched for a certain frames.

6. At last, the unmatched Tracks will be considered to have disappeared in this frame,
therefore it will be hidden or deleted (if lost for too long).

Cascade Matching

The cascade matching is the major contribution of the DeepSort compared to Sort tracking,
because it combines the geometric similarity between BBoxes and the appearance similarity
between feature vectors.

As Fig. 3.5 shows, the Mahalanobis and cosine dissimilarities are obtained, and forms the
final cost matrix by weighted summation. For example, N Tracker candidates with M new
Detections will form a N ×M cost matrix.

However, according the author, it would be more practical to simply use the Mahalanobis
distance to gate the cosine distance/cost, i. e. set the distance to infinite large if dmah is over
the threshold. In this way, trivial tuning of the weight λ can be avoided. And the results are
practically more robust.

After the final N ×M cost matrix is obtained, Hungarian Algorithm [KY55] match Tracks
and Detections. Since each Detection should only be matched to one Track (and there is
naturally no internal matching between Detections themselves), it can be understood as a
bipartite graph. And our goal is to find one matched Track for each Detection, and minimize
the overall cost. Denote cost matrix as C(n,m) and the (binary) mask matrix asX(n,m),
where X(N,M) = 1 means index-N Detection is assigned to index-M Track, then the
problem can be described as:

arg min

(∑
n

∑
m

C(n,m)X(n,m)

)
, (3.6)

3 Applied Algorithms 42

Cosine
distance

Cost
matrix

Gating

× Hungarian
algorithm

Unmatched
Tracks

Unmatched
Detections

Matched
Tracks

N Detections
& M Tracks

Feature
update

Mahalanobis
distance N × M

N × M

Figure 3.5: The cascade matching of DeepSort. the Detection carries the newly detected
BBox and appearance-feature vector, while the Track, representing an identity,
contains a Kalman Filter (KF) and a list of past feature vectors. The KF-predicted
BBox by each track will be used to calculate Mahalanobis distance (Eq. 2.11)
with BBox in each Detection, while the feature vectors will be used to calculate
the cosine distance (Eq. 2.12). This cross comparison leads to two cost matrices.
A binary mask will be generated by thresholding the Mahalanobis distance, and
be applied to the cosine distance. Afterwards, the Hungarian algorithm [KY55]
is applied to the resulting cost matrix to handle the matching task.

Note that the Detections excluded by the gating mechanism will be directly marked as
unmatched, and not participate in matching.

3.2.2 Feature Extractor

The feature extractor in DeepSort serves to extract appearance information of the target.
Essentially, a CNN-based model generally consists of a backbone to extract high-dimension
feature maps and head(s) to perform downstream tasks, such as classification. Therefore, any
backbone model is qualified as a feature extractor.

However, modern models tends to be equipped with increasingly deep CNNs to enhance
representational power. Heavy computational cost comes with a price, making the inference
slow and incapable of real-time execution. Therefore, a lightweight model is needed.

In the original proposal, DeepSort takes the wide residual network (W-ResNet, presented by
ZAGORUYKO AND KOMODAKIS in 2017 [ZK17]) as the feature extractor, which processes
32 BBoxes within merely 30 ms on a Nvidia GeForce GTX 1050 mobile GPU. On the
contrary to the ResNet, the W-ResNet leverages the width of feature planes instead of

3 Applied Algorithms 43

stacking ResBlocks in depth.

As the width w of a normal ResBlock is defined as w = 1, and the multiplicative factor as
k, a W-ResNet with w = k and depth of l can be denoted as W-ResNet-k-l. Experiments
indicate that ResBlock that extended in width has following major advantages:

• Comparable performance with simpler (shallower) architecture. A widened ResBlock
(W-ResBlock, w = k) can achieve better performance with similar parameter amount
but much less depth. To be specific, the author observes that W-ResNet-28-10 outper-
forms ResNet-1001 on CIFAR-10 classification task with margin of 0.65% regarding
classification error(%).

• Significant advantage over computation efficiency. The author reports a 2-time-faster
training speed with 50-time-less layers in general. This results from the fact that GPU
is better in parallel computations when handling large tensors.

• Since the previous point implies that a W-ResNet with a similar amount of parameters
to a ResNet can actually run faster, it allows the W-ResNet to be further widened (up
to W-ResNet-28-10, according to the author) to achieve an even better result with
comparable inference time.

Therefore, a W-ResNet is a proper option for lightweight feature extractor. In this work,
a W-ResNet-2-10 with a dense-layer head to form the feature extractor (FE). Contrastive
learning (the SimCLR algorithm presented by CHEN ET AL. in 2020 [Che+20b]) is employed
to train this FE in a self-supervised fashion.

3.3 Monodepth2 for Depth Estimation

The Monodepth2 model, presented by GODARD ET AL. (2019) [GAB19], is a state-of-the-art
self-supervised depth estimation algorithm, dedicated to generating depth map(i. e. per-pixel
depth estimates). The whole algorithm consists of two models for training stage: a Depth
Net for pixel-wise depth map, and a Pose Net to derive egomotion. Only Depth Net will be
used for inference, while the Pose Net assists in constructing geometric constraints.

3 Applied Algorithms 44

3.3.1 The Depth Net and Pose Net

Both Depth Net and Pose Net are composed of encoder-decoder models. Table .1 in
Appendix .1 shows the architecture of their decoders. Two models share the same en-
coder architecture: the ResNet-18 (introduced in Section 2.2.2) with input in the shape of
(H = 192,W = 640, 3), where H and W are height and width respectively.

For Depth Net, the encoder-decoder adopts short-cut connections proposed in the U-Net
model, proposed by OLAF ET AL. (2015) [RFB15], which bridge the encoder and decoder.
This allows low-dimensional features to be taken into account when decoding the high-
dimensional feature from the bottleneck.

In decoding phase, the Depth Net will first use a Conv-layer to decode the feature map, apply
up-sampling to increase its resolution, and merge with the short-cut feature passed from the
encoder. Finally, the a disparity map is generated by the Conv-layer (denoted as disp-conv).
The final disparity map has the same size as the original input image, but with only one
channel for depth, i. e. (192, 640, 1).

For Pose Net, the encoder takes a pair of RGB-images as input, therefore the input shape is
(height,width, 6). In practice, we duplicate the first Conv-layer in depth (channel dimension)
to allow such adjustment, and leave the other rest of the ResNet architecture unchanged. The
architecture is displayed in the second part of Table .1 in Appendix .1.

the decoder of Pose Net will decode the bottleneck without short-cut connections. The
final estimation are six egomotion components: (tx, ty, tz, θx, θy, θz), representing for 3-D
translation and axis-angles (introduced in Section 2.1.1), respectively.

3.3.2 The Training Strategy

The Monodepth2 is a self-supervised-learning algorithm, meaning that the loss is not by
comparing prediction with GT, but by constructing losses from the predictions (and input
data) themselves. This makes the construction of losses the very essence of the training
strategy. Therefore, the relevant losses will be studied first, before the overall training strategy
is presented.

For clarity, let us state some basic denotations: the target (current) frame is denoted as t, its
source (neighbor) frame as t′, which makes the input image pair as It and It′ . Naturally, the

3 Applied Algorithms 45

t′ = t± 1 can either be the previous or the next frame to frame t. The egomotion from the t′

to t is expressed as T t→t′ = (tx, ty, tz, θx, θy, θz).

Photometric Reprojection Loss

The photometric reprojection loss, Lphoto, is calculated pixel-wise difference/error between
two images. As introduced in Section 2.1.4, image (inverse) warping can pixel-wise map the
the source image It′ pixel back to its position on the target image I t, as long as the depth
mapDt, transformation matrix calculated from egomotionM t→t′ , and intrinsic parameters
K are acquired. The inverse-warped image from source to target I t′→t is calculated by

I t′→t = I t′ 〈 proj (Dt,M t→t′ ,K)〉 , (3.7)

where proj(·) is the operation to projectDt in I t, while 〈·〉 here is the operation of sampling
(e. g. the bilinear sampling introduced in Section 2.1.4). The original author follows the
concept of Spatial Transform Network presented by JADERBERG ET AL. (2016) [Jad+16],
and uses the bilinear sampling to sample the T t′ .

To include the similarity of the scene into the loss, instead of simple local pixel comparison,
the structural similarity (SSIM) introduced by WANG ET AL. (2004) [Wan+04] is used (for
more details see Appendix .1). The SSIM models the errors of brightness, contrast and scene
structure separately. Specifically, mean represents the brightness, variance is for contrast,
and covariance is for the similarity of the structure.

Finally, the errp is defined as the weighted sum of SSIM and pixel-wise difference (L1 loss):

errp (It, It′→t) =
α

2
(1− SSIM (It, It′→t)) + (1− α) ‖It − It′→t‖1 , (3.8)

where α = 0.85 is hyper-parameter empirically recommended by the author.

Disparity Smoothness Loss

To encourage local continuity for the estimated disparity, a smoothness loss (Lsmooth). In
addition, the loss will be weakened with edge-awareness when facing actual discontinuity in

3 Applied Algorithms 46

object border, through the term of image gradient ∂I .

Lsmooth = |∂xdisp∗t | e−|∂xIt| + |∂ydisp∗t | e−|∂yIt|, (3.9)

where the disp∗t is disparity map dispt normalized by its mean. According to the work by
WANG ET AL. in 2018 [Wan+18], it punishes the drastic declining of the depth estimates
(represented by the inverse of the disparity).

Refine The Losses

As photometric error, errp (It, It′→t), is computed twice because t′ can be both t− 1 and
t+ 1, the author proposes 1) minimum projection loss; 2) auto-masking; 3) full-resolution
multi-scale refinement, to further refine the Lphoto and Lsmooth.

To begin with,minimum projection loss works as follows: Only pick the minimum between
errp (It, It−1→t) and errp (It, It+1→t), instead of simple averaging. The photometric pro-
jection loss is refined to:

err′p = min
t′∈(t−1, t+1)

errp (It, It′→t) . (3.10)

Auto-masking is to mask out outlier regions: The self-supervised depth estimation algo-
rithms share a common assumption, that the scene is static while the camera is moving. In
practice, however, it is inevitable that there will be moving objects (e. g., cars, pedestrians),
or the camera stops moving (e. g. holding still facing a traffic light). These outliers will cause
degeneration of the training results, manifesting a hollow hole in disparity map and indicates
an infinity value (see Fig. 3.6). Based on the observation that same pixel value implies a
camera holding still, or a moving object with similar relative speed, the author proposes a
binary mask to mask out these particular regions

µ =
[
min
t′

errp (It, It′→t) < min
t′

errp (It, It′)
]
, (3.11)

where [·] is the Iverson bracket. The resulting binary mask µ will be applied to the Lphoto to
avoid the photometric loss to be contaminated by the outlier regions.

As for full-resolution multi-scale refinement, it is employed to refine the details of the
disparity map. It has been observed (in Monodpeth2 [GAB19]), that following flaws will

3 Applied Algorithms 47

Figure 3.6: Example of hollow hole caused by: 1) an object with significantly different speed
relative to the camera; 2) large texture-less region.

occur when only final disparity map is utilized for Lp calculation: 1) the large texture-less
region tends to cause a hole on the disparity map (see Fig. 3.6); 2) texture-copy artefacts,
which means that texture in RGB image will be mistakenly transferred to the estimated
disparity map.

The author therefore proposes to combine photometric loss at multiple scales. Since the
Depth Net encoder has four short-cut connections from encoder to the decoder besides
the final output, the decoder can generate an intermediate disparity map disps after each
connection.

The subscript s stands for scale, e. g. s = 0 indicates the original resolution (192, 640). And
as the s increases by one, the resulting resolution will be decreased by a factor of two, e. g.
disps=2 has the size of (96, 320).

Disparity maps at each scale will be up-sampled to the original resolution, and participants
in calculation of err′p by Eq. 3.10. And finally Lphoto =

∑
s err′s,p.

In addition, the smoothness loss will also be refined by this multi-scale technique. Specifi-
cally:

Ls,smooth = Lsmooth/s
2. (3.12)

Overall Training Strategy

The overall training strategy can be illustrated with the Fig. 3.7. Since It−1 and It+1 have the
same behavior in training, they are all referred as source image (It′) to simplify the notation.
And the It is referred as the target image.

3 Applied Algorithms 48

Egomotion
It → It'

Reconstructed
 frame: It' → It

Target, It Source, It'

Depth net

depth map

Inverse warping

Pose net

Smoothness
loss

Reprojection
loss

Camera
parameters

+

Figure 3.7: The self-supervised training pipeline of the Monodepth2 algorithm [GAB19]. The
Depth net estimates the depth map for target view It, while the Pose net estimates
the egomotion from target to source view. Combining with camera parameters,
a bilinear sampling function will be calculated for the inverse warping, which
reconstructs the It by It′ . Comparing the reconstructed target with original target
image will lead to reprojection loss. In addition, the smoothness loss is calculated
through the depth map generated by It. The two losses will form the final loss.

The training pipeline can be summarized as

1. The source-target pair is fed to the Pose Net and produce the egomotion, i. e. the
translations and axis-angles (tx, ty, tz, θx, θy, θz), which are combined into the trans-
formation matrix M t→t′ . To keep the temporal order, It′ and It are swapped when
t′ = t− 1.

2. Meanwhile, the target It alone will be fed to Depth Net and generate the raw estimation
of disparity map (dispt), which is then inversed and normalized to depth map (Dt) by
Eq. 2.20.

3. The Dt, Mt→t′ , known camera intrinsic parameters K, are used to calculate the
projected depthDt→t′ . The inverse warping is then conducted by Eq. 3.7 to re-project
the It as It→t′ .

3 Applied Algorithms 49

4. The photometric reprojection loss Lsphoto at each scale is calculated. And with Dt and
It, The smoothness is calculated by Eq. 3.9 and refined by Eq. 3.12 at each scale.

5. The final loss Ltotal is then calculated by Ltotal =
∑4

s=0 (Ls,photo +Ls,smooth).

With training methods introduced, it is reasonable to discuss the pros and cons over the
choice of Monodepth2:

• The input data for both training and inference are simple. It requires only monocular
image (and camera parameters) as inputs, no additional information needed, such as
stereo pairs in the work by GODARD ET AL. (2017) [GAB17]; or segmentation masks
in the Struct2Depth model presented by CASSER ET AL. (2019) [Cas+19].

• The components and structure of training is less complicated. There is no auxiliary
motion modelling (e. g., modelling each moving object) like in the GeoNet model
presented by YIN AND SHI (2018) [YS18].

• Due to its simplicity, the amount of hyper-parameters is relatively small, thereby more
convenient to be tuned.

• It also supports training with stereo pairs (or mixed monocular images), which extends
possibility to further study. In addition, according to the author, the minimal projection
method will be extra beneficial to training result.

3.4 Object Motion Derivation

The full motion includes both distance and velocity. Since the velocity is the derivative of the
position/distance with time, it can be derived directly from the distance/depth estimates with
known time interval or FPS of the video. Generally there are two directions, depending on
whether GT of the distance (and velocity, if available) is known, in other words, supervised
or direct-derivation methods. The following sections describe two methods, respectively.

3.4.1 Supervised-Learning Method

A supervised network can be applied when there is enough GT data of motion (at least
distance). If not directly available, the GT data can still be obtained with known FPS
with Eq. 2.21. Considering that our depth estimation is achieved self-supervised (see Sec-

3 Applied Algorithms 50

tion 3.3 for details), where the losses are elaborately designed regarding the photometric and
geometric constraints, it is impractical to extend the architecture for further purpose.

However, there exist other works, e. g. [KMF18], [Son+20], that employ end-to-end networks
to estimate the full-motion directly from the image data with pre-computed detection results.
Their methods can be summarized as follows:

1. Combine the pre-computed BBoxes and motion networks, i. e. depth- and optical-flow-
estimation network. There are two ways to combine:

a) Use the BBoxes to crop out image patches into patches (regions of interest), and
feed the patches into motion network;

b) Alternatively, the whole image is fed to motion networks respectively, and the
BBoxes are used to crop out motion maps, i. e. the depth and optical-flow map.

2. After patches of motion maps are obtained, a Multi-Layer Perception (MLP) head is
used to derive the full motion. To contextualize this kind of MLP, it will be referred as
the Motion-MLP.

Motion-MLP

Inspired by the works mentioned above, it is reasonable to concatenate a Motion-MLP after
the Monodepth2 to bridge the gap between depth map (from Monodepth2) and final motion
estimates. Similar to the method in [Son+20], the motion map (depth only, in our case) is
cropped into patches by detected-BBoxes, and then the MLP is used to leverage the following
information:

• The patches of pixel-wise motion estimates from the current and the previous frame.
The same identities will be tracked by DeepSort (see Section. 3.2) to form a pair of
patches for each identity in temporal order.

• The six geometric hints: gi =
(

fx
ri−li ,

fy
bi−ti ,

li−cx
fx

, ti−cy
fy

, ri−cx
fx

, bi−cy
fy

)
, where (l, t, r, b)

stand for left-, top-, right- and bottom coordinates of a BBox, i is the BBox identity,
(fx, fy) are focal lengths, and (cx, cy) represent the principal point of the image plane.

• Finally, the FPS, a single digit as the hint of time.

Specifically, each pair of depth patches will be max-pooled into a 2-D feature map with shape

3 Applied Algorithms 51

of (13, 13), and flattened into the final 1-D feature vector f i with shape of (1, 169).

The input dimension of the Motion-MLP is then obtained: 2× (169 + 6) + 1 = 351. And
we construct the MLP with 3 hidden layers, whose amount of units are in descending order;
256, 128, 64. And the output dimension are four-digits of full-motion denoted by mi, i. e.
mi =

(
dix, d

i
y, v

i
x, v

i
y

)
.

The pipeline of Motion-MLP usage can be summarized as Fig. 3.8.

Depth
map Crop

Bbox

Maxpool
& Flatten

Feature
vector, 169-D

Geometric
hints, 6-D

...

...

...

...

Feature
vector FPSGeometric

hints

MLP
Distance

Velocity

Frame 1 Frame 2

Concatenate

Figure 3.8: The schematic of the usage of Motion-MLP. The BBOx is used to crop out
object-containing regions out of depth map. Feature vectors are composed of
both depth and geometric features. Pair-wise feature vectors and FPS are passed
to MLP to estimated the distance and velocity of the object represented by the
BBox.

3.4.2 Generalized Method for Unfamiliar Scenes

For the case where the GT motion is available, supervised methods are always feasible.
However, the motion sensors, e. g. the LiDAR, are not always available in real-world
applications. Besides, the performance for supervised-learning methods will deteriorate
when facing a scene not similar to that of the training data. Therefore, even if the model is
already well-trained with a dataset with GT, it cannot be tuned when facing an unfamiliar
scene.

3 Applied Algorithms 52

With limitations of supervised-learning methods taken into account, it is necessary to utilize
a method that can directly derive velocity from the depth estimates and temporal hints. In
this way, the full-motion derivation can be completely supervision-free. The overall pipeline
will be firstly presented, and then follows the elaboration:

1. Use the BBox to crop out the depth-map patch of each identity. And the patch is
processed into a final estimate of depth.

2. To project the depth into 2-D distance, he BBox and camera intrinsic parameters are
used to estimate the yaw angle (horizontal rotation angle between the camera and the
target).

3. The Kalman Filter is then used to derive the full motion out of the raw depth estimates
in the first step.

The cropped depth map is cropped by a square BBox instead of a fine segmentation mask,
and needs to be processed in to one final value. Since background or overlapped objects will
inevitably be included, it is necessary to alleviate contamination from these alien objects.
The observation, demonstrated in Fig. 3.9, is as follows:

• The contamination from the background, which will be estimated to be far larger
(farther) depth values than the target object. And it is normally around the borders, not
likely to be in the central area.

• The occlusion, however, is the objects and pedestrians coming from the horizontal
direction that might cover some of the central area. And their depth estimates will be
smaller (nearer) than the target.

• The depth map itself also has flaws: The upper-part of the patch will sometimes fade
into the background and get a smaller value; The estimation near the boundaries of the
image will not be as accurate as the rest.

To deal with the problems stated above, we first simply shrinking the cropped area towards
the center, which filters out the most of the background and some of the occlusion. As the
Fig. 3.9(b) shows: To handle the fading-into-the background problem, larger portion (20%)
on the upper region is taken than the other three direction (10%), leaving 50% the area of the
original patch to be further processed.

Afterwards, the mean of the middle interval of the shrunken patch will be calculated as the
final estimate. Specifically, we sort the depth estimates by value, and average the 30% of the

3 Applied Algorithms 53

(a) (b)

Figure 3.9: Examples of contamination when averaging the depth-map patch by BBoxes.
(a) Since a BBox can include extra objects, which might be the occlusion or
background, the mean value of the depth-map patch cannot accurately reflect
the object’s depth estimate. (b) The depth-map patch’s upper region is slightly
smaller compared to the main area, sometimes even fade into the background.
Therefore, before calculating the mean depth, the BBox is shrunken to handle
above-mentioned flaws.

middle interval to be the raw estimate representing the depth of the target. This can„to some
extent, filter out outlier values from occlusion and fading edge areas.

Next, the KF will model the full motion m from the raw estimate of depth), where m =

[dx, dy, vx, vy], are parameters to be modelled as described in Section 2.4.3. For each frame,
the raw depth estimate with its identity will be passed in, where new identities initiate a new
KFs. Previously existing KFs will perform prediction-and-correction to produce the final
estimate on depth and its derivative with time (i. e., the velocity). Naturally, this method also
works for 2-D distance, which will produce the corresponding 2-D velocity.

Since the KF will be initiated with a large variance to indicate the uncertainty in the initial
phase, the KF-estimated full motion is not robust nor stable enough for direct use. Therefore,
a waiting phase needs to be set before the estimates are actually usable. Since we process
the image frame-wise, one way to set the phase by frame number is to introduce the FPS to
calculate the time [s], which is invariant against different FPS settings for different cameras.

54

4 Proposed Object Motion Estimation System

4.1 Overall Pipeline

As shown in Fig. 4.1, this work dissembles the task into the following sub-tasks:

1. Object Detection (OD) and multi-object tracking (MOT), which are carried out with
detectors introduced in Section 3.1 and Section 3.2. Since our first choice for detector
is YOLOv4, the phrase detector is by default for YOLOv4, unless stated otherwise.

2. The depth map estimation achieved by Monodepth2 (Section 3.3).

3. Combine the 1 and 2 to estimate the rough depth for individual objects, and derive
their final estimates on depth and distance through methods described in Section 3.4.

Detection
Depth Map
Estimation

Visualization

Object Motion
Estimation

Image
Sequence

Tracking

Identity
Association

Figure 4.1: The task breakdown of our motion estimation pipeline. For each image/frame,
object detection and tracking are applied to generate tracked BBoxes; meanwhile
a depth map is estimated. The tracked BBoxes are then used to determine the
regions of interest in the depth map, which leads to depth-map patches. Finally,
the object-wise motion estimation is achieved based on the patch.

4 Proposed Object Motion Estimation System 55

4.1.1 The General Solutions

Since each algorithm’s detailed mechanisms have been elaborated in the previous chapter,
the rest of the section will focus on how those algorithms connect to or interact with each
other at each step.

Object Detection

To begin with, a RGB image I(t) at time step t, with shape (Hod
in ,W

od
in , 3), is passed to

the detector. The detection results are denoted as Detod, in total of N . Note that the Deti
(i = 1, 2, 3, · · · , N) will be enriched with new members, as each step contributes new results,
thereby a subscript is given to distinguish between different steps.

A Detodi has the following members for each Detodi :

1. the BBox defined by the coordinates of its two vertices on the diagonal, which could fol-
low the convention of left-top-right-bottom (ltrb) but can also be in other conventions
as needed;

2. the class label represented by one integer. The COCO-dataset, on which the detector is
trained, has 80 classes. However, we only need car-alike categories: car, bus and truck,
while categories like person, motorbike and bicycle are not in the scope of this work;

3. the confidence score, which range between [0, 1] to indicate the probability of the
detection is valid.

Object Tracking

The DeepSort, the Multi-Object tracker (MOT), is placed after the OD. The DeepSort will
first utilizes the feature extractor (FE) to generate a 1-D feature vector with f trk

i shape
(1, 128). Specifically, the each BBox in Detodi is used to crop out a patch Pi out of I(t) to
feed the FE. The resulting feature vectors f trk

i are added to the corresponding Detodi that
forms Dettrki as the input of DeepSort.

If the DeepSort can find a match for a current detection Dettrki,in(t) in previous detections
Dettrki,in(t− T), it will be called a tracked detection. Note that T is the search range/lifespan
that the DeepSort will take into account. Upon the first successful tracking, a unique ID is

4 Proposed Object Motion Estimation System 56

given to the detection, representing the same object tracjecting with time. A set of Det(t)

throughout time steps with the same ID is referred to as a Track.

The are IDs are then added to each detection Dettrki,in(t), which is updated to Dettrki,out(t).
At this point, the object visual recognition (OD with MOT) of is finished. And Detodi ∈
Dettrki,in ∈ Dettrki,out.

Depth Map Estimation

Meanwhile, the raw image I(t) is input to Monodepth2, the depth-map estimator (DME).
Since the network requires a fixed aspect ratio for input image, the raw I(t) is center-cropped
(denoted by Idme(t)) to reach aspect ratio ra = 640 : 192, and resized to (192, 640, 3) before
fed to the network. Specifically:

W dme = W od, (4.1)

Hdme = W dme/ra, (4.2)

offset = (Hod −Hdme)/2 (4.3)

where offset is the half of the cropped-out region in vertical direction. Hdme is the actual
height (after center cropping) of the Monodepth2 input size. The Monodepth2 then generates
the depth mapD(t) with shape (192, 640, 1).

To get depth estimation for individual objects, theD(t) is cropped out into patches defined
by BBoxes in Det(t). Notice that the BBoxes here is defined according to the raw image
size (Hod,W od), which might not fit the size of D with size (192, 640). Therefore, offset
and resizing is needed to adjust the BBox coordinates before they are applied on theD. The
final effect is illustrated in Fig. 4.2.

As a result, the depth patches Di that represent the depth map of individual objects will be
obtained.

Object-Wise Motion Estimation

At this point, there are two ways to derive the final depth and velocity from Di depending on
the availability of GT data:

4 Proposed Object Motion Estimation System 57

Figure 4.2: Center cropping of the image with a aspect ratio different from Monodepth2’s
[GAB19] required input size. The yellow lines indicates the new boundary
after cropping. The white BBox is the original label for the vehicle, while the
red-dashed BBox is the BBox after the cropping.

1. If GT data of an individual’s depth is available, the derivation from object-wise depth
map (Di) to depth value (di) can be solved by data-driven method, specifically the
Motion-MLP (for more details are in Section 3.4.1)

2. In a more general situation where the GT is unavailable, the Kalman Filter (KF) is
used (described in Section 3.4.2).

Motion-MLP requires information from both the current and previous frame, denoted by tc
and tp = t− T (the choice of T is a hyper-parameter explained in Section 4.1.2). To begin
with, the object-wise depth mapDk(tc) andDk(tp) for each valid ID k are drawn, where k
denotes the unique ID tracked across time.

Afterwards, Ds are resized to a fixed size, following the max-pool that generates the feature
vectors fk(tc) and fk(tp). The geometric hints gk(tc) and gk(tp) are calculated with BBoxes
Bk(tc) andBk(tp) respectively, as described in Section 3.4.1. The actual FPS, defined as:

FPSact = FPScam/T, (4.4)

where subscripts cam and act denotes the original FPS of the camera and the actual FPS
used in Motion-MLP. T is the time interval defined by number of frames.

Finally, the complete input for the identity k at time tc is formed:

4 Proposed Object Motion Estimation System 58

(
gk(tp)Tfk(tp)T, gk(tc)

Tfk(tc)
T,FPSact

)
. The Motion-MLP outputs the full-motion esti-

mationmk(tc), wherem = (dx, dy, vx, vy) stands for the 2-D projections of the depth and
its changing rate.

Kalman Filter (KF) only inputs either depth d or its 2-D projections d2D = (dx, dy) for the
current time step, where the latter can be derived by the former. For clarification, we assume
that 2-D full-motion is our goal. And since KF doesn’t require previous information, we will
omit the t.

For starters, the square patchDk is shrunken in all four directions, and the raw depth estimate
dest is estimated, as described in Section 3.4.2. The included angle, between the camera-
upfront and camera-target, as Fig. 4.3 shows, can be derived through the pinhole model
(Section 2.1.2).

Dx

dx

Dy

Df

pp

α

Figure 4.3: Usage of pinhole model to derive the included angle between the camera’s princi-
pal point (pp) and the object vehicle. The triangulation similarity is established,
so that the included angle α can be obtained. In this way, Dx and Dy, the 2-D
projection of depth estimation D, are solved.

Denote the included angle α, camera’s principal point coordinates pp = (ppx, ppy), and de-
fine the BBox B = (cx, cy,w, h) by center-width-height convention. The α can be calculated
as follows:

bcx = cx + w/2, (4.5)

bcy = cy + h/2, (4.6)

α = tan−1
(
bcx − ppx
bcy − ppy

)
, (4.7)

where (bcx, bcy) is the bottom-center position. Then the 2-D projections can be easily

4 Proposed Object Motion Estimation System 59

calculated: d2D = [d sin(α), d cos(α)]

Afterwards, the d2D is fed to KF as the measurement to correct its prediction and update the
KF-model. The output will be (dx, dy, vx, vy) for 2-D input or (d, v) for 1-D depth input.

4.1.2 Implementation Details

In this subsection, implementation details regarding the algorithms mentioned in Section 4.1.1
will be elaborated. They are mainly

• important hyper-parameters of the networks/algorithms;

• the data processing, including the data augmentation in pre-processing, and the refine-
ment methods in post-processing;

• the modifications/improvement based on the original proposals.

Notice that this subsection concentrates on the procedure, which follows the same se-
quence as the last subsection, namely OD, MOT, DME and OMD. The critical reasoning of
parameterization and modifications will be continued in Section.4.2.

Object Detection

The YOLOv4 [BWL20] described in Section3.1 is the default detector in this work, because
it has excellent inference speed and good trade-off for accuracy. The original proposal for
YOLOv4 use the input size of (416, 416). The network produces numerous of detection
proposals (BBoxes with class and confidence score), which needs to be further filtered by
Non-Maximum Suppression (NMS). The lower IOU-threshold in NMS is, the less false-
positive (FP) is, but the chance of false-negative (FN) cases will also increase. Compared to
the default value of 0.3, the IOU threshold in this work is set to 0.38 to allow a little trade-off
between TP and sensitivity to small/farther objects.

Although the thresholding by confidence is optional in NMS of YOLOv4, it is recommended
in later object tracking. Therefore, the confidence threshold of default 0.5 is also included,
omitting the detection with confidence less than 0.5.

Since the official work has released a well-trained model that includes the vehicle-related
classes, namely car, bus and truck, there is no additional training in this work.

4 Proposed Object Motion Estimation System 60

Object Tracking

As introduced in Section 3.2, the core of DeepSort tracking lies in two-stage matching,
namely cascade matching and IOU matching.

Cascade Matching includes two metrics: Mahalanobis Distance (dmah) to match parame-
terized BBoxes (center coordinates, aspect ratio and height); and Cosine Distance (dcos) to
match the appearance-feature vectors.

We follow the default settings for dcos = 0.3, and dmah equals 9.49 for 2-D mode and 5.99 for
1-D depth mode. Specifically, the dmah is taken from the 95% confidence interval computed
from the inverse χ2 distribution [Dod08] with 4 and 2 degree of freedom for 2-D and 1-D
mode, respectively. In theory, dcos and dmah should be combined by weighted summation, but
experiment results have shown that using dmah as a gating threshold will be more practical
for a dynamic scene.

IOU Matching is a more straightforward process. The IOU values are calculated between
each newly-detected BBox and the KF-predicted BBox in each Track. Notice that the
KF-predicted BBoxes are not actually from detection results, but merely rough predictions
based on previous updates of a KF model (see Section 2.4.3 for details of Kalman Filter).

The IOU-distance threshold in the original proposal dIOU = 0.7. However, the IOU is
actually not an optimal metric, especially in a dynamic scene where location drift for a target
is the combination of target motion and the camera’s egomotion. Hence, the IOU metric is
replaced with DIOU (Eq. 2.15), allowing two BBoxes with no intersection to be matched.
The threshold dIOU is thereby replaced with 1.0.

There are hyper-parameters worth mentioning regarding background processing of a indi-
vidual Track: the budget (i. e. the maximum number) of the feature vectors, and its maximum
age:

• A budge set for a Track to only preserve a fixed number of the newest appearance.
This helps reduce the unnecessary comparison between newly-detected BBoxes with
features too old to reflect the latest appearance. It is by default set to 70 for tracking
the people, which are obviously slower and stays longer in the image. The vehicles,
however, tend to have a shorter stay in the image. Hence budget is set to 35, which
also increases the running speed slightly.

• The maximum age is the maximum time allowance for a Track to be lost, i. e. once

4 Proposed Object Motion Estimation System 61

the Track cannot find a match in age frames, it will be reckoned as lost and be deleted.
The default setting of age = 3 is adopted in this work.

As for the feature extractor (FE), the W-ResNet [ZK17] with the depth of 10 and width of 2
is chosen.

In the original proposal of DeepSort, the FE is trained through the Deep Cosine Metric
Learning proposed by WOJKE AND BEWLEY (2018) [WB18], which is a supervised-learning
method dedicated to person Re-ID problem. In this work, we utilizes a off-the-shelf method
of contrastive learning, specifically the SimCLR [Che+20b] algorithm. It is a self-supervised-
learning framework that pre-trains any backbone/encoder network to learn feature represen-
tation based on raw data. Specifically:

• It temporarily removes the head of the original network, and concatenate a new
projection head (PH). Following the original proposal, the PH is a MLP composed of
two hidden layers. The Unit numbers, 128 and 64, are chosen to match the dimension
of the W-ResNet output. In short, each RGB image is finally processed to be a 64-D
feature vector.

• The cosine similarity is calculated between each objects within the batch and form the
final loss.

As the Fig. 4.4 demonstrates, the resulting new model can be (pre-)trained without any
supervision, since it learns the feature representation by comparing individual objects. The
unlabelled data is from the KITTI dataset [Gei+13]. After training is finished, the first
hidden layer of the PH is preserved as the head that projects a feature map (output of the
W-ResNet backbone) to a 128-D vector. This feature vector will be used as appearance
information, which is matched with the metric cosine distance.

Depth Map Estimation

The Monodepth2, as introduced in Section 3.3, is a self-supervised learning algorithm that
estimates the depth map. During the training stage, the input are image pairs and Depth-Net
and Pose-Net (both with encoder-decoder structure) work together to construct the losses. But
for inference, only one single image and Depth-Net are needed. Although the official code
is released, we re-implement a simplified version and obtained comparable results by
training from scratch. The following will elaborate on the implementation details, which

4 Proposed Object Motion Estimation System 62

Random
Augmentation Encoder

f1,1

f1,2

f2,1

f2,2

Projection
head

Cross-
compare

Figure 4.4: The SimCLR model is composed of: 1) a self-defined encoder/backbone, 2)
two additional dense layers as projection head. The pipeline of the contrastive
training by SimCLR framework. Each time, a pair of images is applied with
random augmentation, resulting in four variants. Each variant will be passed
to the SimCLR model, which generates a fixed-length feature vector. Loss is
computed by cross-compare the cosine similarity between each vector. The
encoder will gain the capability to learn feature representation. In this work,
the first dense layer of the projection is directly taken as the head to project the
feature map into a 128-D feature vector.

generally follow the original proposal unless stated otherwise.

KITTI dataset [Gei+13] is chosen to train the model (see Section 5.1.1 for details regarding
is dataset). The raw image size of KITTI is (1242, 375) which generally fits the aspect-ratio
requirement of the network input (640, 192). Hence, no center-cropping is needed. The
complete dataset includes 93 thousand depth maps with corresponding raw LiDAR scans
and RGB images. Although the former is not needed in training, it could still serve as a
qualitative indication of how well the model has been trained.

We follow the Eigen split [EPF14] to re-group the dataset into the training, validation and
testing set. Pre-selection proposed in SfMLearner [Zho+17] is adopted to filter out static
scenes, which leads to 39,810 triplets (i. e. images in previous-current-next order, denoted by
It−1, It and It+1) are perserved for training and 4,424 for validation. The camera intrinsic
parameters, including focal length and principal point are provided and treated as known
parameters. No distortion effect is taken into account.

During data preparation, the loaded images are firstly grouped into triplets (in temporal

4 Proposed Object Motion Estimation System 63

order). Afterwards, triplets are (for 50% chance) applied with augmentation of brightness,
contrast, saturation with a factor randomly chosen from [−0.2, 0.2], and hue with random
factor between [−0.1, 0.1]. In addition, left-to-right flipping is randomly applied to the
images with 50% probability. Notice that all the augmentation within one triplet is the same,
which allows the It−1, It and It+1 to be augmented the same way.

The total loss is the weighted sum of reprojection loss and smoothness loss (elaborated in
Section 3.3.2):

Ltotal = αp · Lphoto + αs · Lsmooth, (4.8)

where αp = 1.0 and αs = 1× 10−3. The values are chosen experimentally by the author of
Monodepth2 [GAB19].

The training is carried out with learning rate (lr) of 10−4 for first step of 10 epochs with
a decay of 0.1 for fine-tuning phase. After training by the code of our own version, it has
been observed that the improvement is scarce after 10 epochs and the quality is already at
a high level. Nonetheless, it is still slightly outperformed by official results (quantitative
comparison in Section 6).

Apart from the straightforward training strategies mentioned above, the author [GAB19]
argued that no additional tricks (auto tuning the lr, freezing layers, etc.) are needed.

Object-Wise Motion Estimation

As introduced in Section 4.1.1, the object-wise motion derivation can (OMD) be achieved
with Kalman Filters (KFs) or a Motion-MLP, depending on the usage of GT data.

The KF method models an object’s motion and keeps updating with time. To begin with, let
us define the dimensions of the input and full state as dimz and dimx, respectively. For 2-D
motion, KF is fed with 2-D raw distance estimate, and outputs final 2-D distance and velocity
estimates, i. e. dimx = 4 and dimz = 2. Similarly for 1-D mode, dimx = 2 and dimz = 1.
In addition, the update time step dt = 1, indicating a frame-wise update.

As described in Section 2.4.3, the hyper-parameters are the initial state (i. e. t = 0) of the
following parameters:

• The covariance P 0 that reflects uncertainty of the state estimate. Since there is no

4 Proposed Object Motion Estimation System 64

pre-knowledge for an object’s motion, it is set to a diagonal matrix with large numbers
P 0 = diag(500, 500) for 1-D motion.

• The covariance Q0 that represents the process noise is initialized with a discrete
constant white noise model, explained in BAR-SHALOM’s book (2001) [BLK01].
Specifically for 1-D mode:

Q0 =

[
0.5 · dt4 0.25 · dt3
0.25 · dt3 dt2

]
σ2
v , (4.9)

where σv = 0.05 is interpreted as the acceleration increment. Since we assume a
minimal change of acceleration, the value is set to a small number.

• The covariance R0 stands for the measurement noise. Considering the physical
meaning of the input is depth, which roughly ranges [0, 100], R0 = diag(5, 5) is
chosen to initialize the noise for 1-D mode.

4.2 Highlights and Main Contributions

In this section, important contributions and modifications based on the original proposals of
respective algorithms will be highlighted and justified. For a more continuous understanding,
the introduction will still follow the flow of the pipeline.

Note that the YOLOv4 and Faster-RCNN detectors are off-the-shelf models and will not
be further discussed. The discussion on Kalman Filter (KF) will neither be extended, since
there is not much to alter. In addition, the following illustration will assume a 2-D motion
mode unless stated otherwise.

For DeepSort MOT-tracking algorithm, there are following points worth mentioning:

• The direct-gating mechanism is replaced with soft-gating in the cascade matching step.
Originally, the dmah between BBoxes from detection and KF-prediction, but the KF
model is initialized with high uncertainties (Q0 and P 0). Therefore, a certain frames
of buffer time is needed before the KF-prediction is usable. We set this buffer-time of
0.5s, calculated by multiplying the camera’s FPS with the number of frames.

• The choice of contrastive training over supervised training for FE. Although learning
from GT data often yields better performance regarding the same dataset, the work

4 Proposed Object Motion Estimation System 65

of labelling is even burdensome for tracking task than detection. Hence, a quick and
unsupervised training is of better practical sense.

• The IOU metric is replaced with DIOU. As introduced in 3.2, it handles more dynamic
scenarios by taking the non-intersection case and BBox geometric characteristics into
account.

• (Optional) assistant tracker serving for each Track. To handle the occasional failures
of object detection, e. g. due to smaller size or darker lighting conditions, a KCF
tracker [Hen+15] is initiated by the BBox of each tracked detection. Since the KCF
only requires GT-BBox in the initiation, it could automatically update for each frame.
The implementation of KCF is done by OpenCV library [Bra00]. However, it proved it
to be a failure through following qualitative observation:

– The failure report has too many false-positive cases, i. e. it sometimes continues
to update a random BBox even though the vehicle has left the image.

– The frequent, object-wise initiation is costly, which slows the overall running
speed significantly.

Therefore, it is deemed impractical.

As for the Monodepth2 depth-map estimation, there is no structural change made. Although
tentative ideas borrowed from other similar algorithms have been experimented, yet unfor-
tunately, none of them is proved to be effective compared to the original performance.
For the purpose of exploration, they are still listed below and will be shortly analyzed (see
Chapter 5 for quantitative analysis):

• The additional rotation-consistency loss is added based on the Pose-Net results. In the
original proposal, the axis-angles and translations are estimated by the Pose-Net. The
resulting transformation matrix T t→t′ with rotation matrixRt→t′ , along with estimated
depth map Dt are used for the image warping process (see Section 3.3). Naturally,
the transformation in reverse temporal order should be symmetric. Therefore, we
swap the image-pair sequence and estimate the reversed pose, where the axis-angles
are combined to a reversed rotation matrixRt′→t′ . Ideally, the two rotation matrices
should have the following relationship (Eq. 4.10), thereby the rotation-consistency loss

4 Proposed Object Motion Estimation System 66

Lrot as Eq. 4.11:

I = Rt→t′Rt′→t, (4.10)

Lrot = αrot
‖Rt→t′Rt′→t − 1‖2

‖Rt→t′ − 1‖2 + ‖Rt′→t − 1‖2
, (4.11)

where I is the identity matrix; αrot is the weight in the final loss. Setting a larger αrot

(greater than 1× 10−3) makes the training difficult to converge, while a smaller value
(e. g. 1× 10−4) seems to have no observable influence at all.

• An additional pseudo-depth channel added to the input of Pose-Net. Inspired by
the work of WANG ET AL. (2019) [Wan+19], we insert the depth map estimated
by Depth-Net to image, resulting to a pseuo-RGBD image with shape (192, 640, 4).
Theoretically, it provides Pose-Net with richer information which should result in an
improved pose estimate, thereby the precision of inverse-warping, the reprojection loss,
and finally yielding an improved training result for depth estimation. But unfortunately,
this modification damages the performance.

• A new loss based on the real-world-size constraint was also experimented. Inspired by
Struct2Depth model [Cas+19], we use pre-computed BBoxes to crop out depth-map
patches during training, and roughly estimate the object-wise depth value (Di). Since
BBoxes height h could reflect the real-world size when the focal length and vehicle
height Dapproax are roughly known as in Eq 4.12, we impose a constraint loss Lsz on
the object-containing region.

Dapprox ≈ fy
H

h
, (4.12)

Lsz =
1

D̄

N∑
i=1

|D −Dapprox| , (4.13)

where the Hobj is the real height in world units; N is the number of detected objects;
D̄ is the mean of the depth patch as a normalizer. With no luck, the qualitative
observation demonstrated severe degeneration of the depth map quality. Therefore, no
further evaluation was carried out with this idea.

The Motion-MLP for OMD is an idea inspired by [KMF18] and [Son+20], where the velocity
is estimated from the motion-related features (e. g. the patches of optical flow and depth
map). We propose a certain simple data augmentation methods during its training stage,

4 Proposed Object Motion Estimation System 67

leveraging the pre-knowledge of basic physics.

Assume that we have GT distance (1-D mode) of an object for one frame t, denoted by
mt = (dt, vt) and It, respectively. By estimating the depth of the same object for this frame
and its previous frame (It−1), we have estimated depth d̂t−1 and d̂t, and thereby the velocity
v̂t.

The following augmentation could artificially create more scenes based on the above-
mentioned scene:

• A static scene. By changing the GT:mt → (dt, 0) and replace It−1 with It, we have
a scene indicating the vehicle stands still.

• A scene with reverse movement. As dt and vt are given, it is natural that the previous
distance dt−1 = dt − vt · FPS. By changing the GT: mt → (dt−1,−vt) and swap the
It−1 and I t, we have scene where the vehicle travels backward compared to original
scene.

• A scene with changed speed. As introduced, the time interval is expressed by FPS,
which helps calculate the velocity (Eq. 2.21). In other words, given a fixed distance
difference (∆d = dt−dt−1), a longer unit of time interval will result in smaller velocity.
Therefore, by altering the original FPS to FPS′ and mt → (dt, vt · FPS

′

FPS
), we create a

scene with a different GT-speed

Supervised-learning algorithms whose training results depend greatly on the quality and
amount of the GT data. The data augmentation as mentioned above can artificially create
three alternative scenes for each original scene, which "enlarge" the dataset by three times,
and thereby should be theoretically beneficial to the model robustness.

Unfortunately, the Motion-MLP in this work merely serves as an alternative to utilize the GT.
Since it is not integrated into the training of depth estimation (Monodepth2, in our work), the
Motion-MLP alone has very limited learning potential for further improvement. Therefore,
Our primary choice is still the KF-method, because it allows the object motion estimation
system to be constructed in a self-supervised way (detector not included).

4 Proposed Object Motion Estimation System 68

4.2.1 Additional Features

This subsection introduces some of practical features: the motion visualization, the graphical
user interface (GUI), and the preliminary considerations on the (linear) motion forecasting
function.

Visualization

As introduced in previous sections, the proposed OME system estimates relative distance and
speed for each object on sight. As Fig. 4.5 shows, the results can be visualized for better
understanding in practical use.

Figure 4.5: Visualized results of the proposed object motion estimation system. The left-top
label is the relative motion of velocity with unit [m/s] and distance with unit [m],
respectively in longitudinal and lateral directions. The red vector at the BBox
center is the visualized 2-D relative velocity, whose magnitude and included
angle corresponds to the velocity values. The red dot points out the BBox’s
bottom center, which highlights the coordinates of this identity on the image. The
label "ID: 4" at the right-bottom corner is the tracking identity.

Notice that we visualize the velocity through a vector, including its magnitude and included
angle, to conveniently express the general information regarding the speed. The label at the
left-top corner are the concrete object motion estimates. Moreover, the color can express
additional information, e. g. whether the the threshold of (safe) distance or velocity has been
exceeded.

4 Proposed Object Motion Estimation System 69

Graphical User Interface

For better experimentation and using experience, a graphical user interface (GUI) has also
been developed, which mainly consists of

• The video player panel shown in Fig. 4.6.

• The function tab panel that enables control over options, e. g. whether to display BBox
or ID number, etc. The snapshots are placed in Appendix (Fig. .2).

• Auxiliary setting interface for, e. g. the loading of the video.

Figure 4.6: The video player panel of the developed GUI. The slider can be dragged back
and forth to inspect the intermediate results, while the progress bar indicate the
detection progress. The labels for the vehicle is introduced in Fig. 4.5.

Motion Forecasting

Up till this point, the proposed OME system is able to estimate relative distance and speed.
Assuming that a vehicle’s motion, in the normal driving process, does not abrupt within unit
time, there exists the potential of forecasting a near-future motion (position and speed) for it.

As Fig. 4.7 conceptualizes, the forecasting includes two aspect; the motion data, and its
change of appearing size on the image (e. g. larger as it gets closer).

4 Proposed Object Motion Estimation System 70

(dx,1, dy,1)

(dx,2, dy,2)

Figure 4.7: Visualized concept of the forecasting motion of a vehicle. The filled BBox in
orange color is the forecast BBox. The small green circles on the image center is
the principal point, while the circles on the bottom center of BBoxes represents
the coordinates/locations of the vehicles in a pinhole model.

Defining the unit time dt, for a time interval T , there are NT = T/dt frames. We define a set
V(t0) that contains the latest-one-second velocity estimates up till t0, i. e. for N1s frames in
total. If the motion estimatesm(t0) := (d(t0),v(t0)) at time t0 is obtained, then the forecast
distance dT at tT = t0 + T can be estimates by

N1s := 1/FPS, (4.14)

V(t0) := {v(t0),v(t−1), · · · ,v(t−N1s)} , (4.15)

d(tT) = d(t0) +NT ·
∑N1s

i V(t0)

N1s

, (4.16)

where FPS is the video’s frame rate, e. g. FPS=10 for KITTI dataset [Gei+13]). Notice that
we use the average value of past the latest set of velocity estimates to determine the current
velocity, which could theoretically alleviate unstable fluctuation.

Define 2-D projections of vehicle motion as d := (dx, dy). As Fig. 4.7 depicts, the BBox’s
bottom center represents its coordinates in the pinhole model. Then the coordinates for the
current and forecast 2-D distance are acquired, namely (dx,1, dy,1) and (dx,2, dy,2)), where
the latter is the forecast position by Eq. 4.16.

According to the relationship between the coordinates/position on the image (in px) and
in reality (in meter), as introduced in Fig. 4.3, the position of the forecast BBox can be
obtained. Similarly, the size of the forecast BBox are the original size multiplied with the
factor SBBox = |d(t1)| / |d(t0)|.

4 Proposed Object Motion Estimation System 71

Admittedly, the forecasting mechanism mentioned above is still preliminary and can only
be employed for vague indication. Nonetheless, this is still the first step to forecast relative
distance and velocity, which is still an ill-posed subject in the domain of autonomous driving.

72

5 Evaluation

5.1 Datasets

This section will present KITTI [Gei+13] and CVPR’17 Velocity Challenge (VeloChallenge)
dataset. The KITTI dataset is used for training and evaluation of both tracking and depth
map estimation. The VeloChallenge is used for object motion estimation.

5.1.1 KITTI Dataset

The KITTI dataset is the product of the KITTI Vision Benchmark Suite project, which provides
labelled data for stereo, optical flow, visual odometry, 2-D/3-D object detection and 2-D/3-D
tracking. The detailed introduction to equipment and set-up of data acquisition of KITTI
project is documented in Appendix .3.

For image data, the raw size is 1242× 374 and recorded at 10 Hz. However, the raw depth
values collected by rotating laser scanner are unevenly spaced. Therefore they do not reflect
actual depth values on the image.

For each task, the project provides recommended metrics and standard evaluation procedure
(with code), so that researchers can benchmark their performances. This work evaluates the
developed object motion estimation (OME) system in terms of 2-D tracking and depth map
estimation on KITTI dataset.

5.1.2 CVPR’17 Velocity Challenge Dataset

In order to evaluate the performance of object-wise motion estimation (OMD), the CVPR’17
Velocity Challenge (VeloChallenge) dataset is chosen. The training data of the dataset is
composed of 1074 2-second video clips recorded at 20 Hz (i. e. 40 images per clip), while
the testing set has 270.

5 Evaluation 73

The annotation is limited in following aspects:

• The target number is limited to four, i. e. the annotation is not complete but selective.

• Only the last frame of each clip is annotated, while the first 39 frames are only provided
as contextual information. In other words, there are only 1074 image pairs with valid
motion label, which is far less than KITTI dataset (with over 93,000 raw images).

• The annotation includes Bbox, 2-D distance and 2-D velocity.

• Additionally, 5000 single images are provided as supplementary material. However,
they are not in temporal order and are only annotated with BBox (i. e. no motion data).

Figure 5.1: Example of an inaccurate BBox annotation in CVPR’17 Velocity Challenge
dataset. The visualized GT-label shows that BBox does not precisely enclose the
object. The correct BBox is drawn with red dashed lines for comparison.

After inspection of the data, we observed certain flaws of this dataset, which has been
documented in Appendix .3. Unfortunately, to the best of our knowledge, this is the only
dataset that fits the task of motion estimation. Therefore, the dataset is used despite of its
flaws and we will conduct more qualitative reasoning for a more thorough analysis.

In addition, the lighting condition of this dataset is challenging. Although videos are
recorded in daytime, just as in KITTI, but the image quality is much worse, e. g. the camera
is confronting the sun or the whether is dim. As shown in Fig. 5.2 as examples, the object
in a) is hardly recognizable due to the dimness, while the over-exposure in b) makes the
surroundings of the object textureless (i. e. with less contextual information), which makes it
difficult for the NN to estimate the depth map.

5 Evaluation 74

Last but not least, the image quality is also not optimal. As Fig. 5.1 shows, the image seems
"blurred". Even though it has a resolution of 1280× 720, the visibility of details is far worse
than images in KITTI with a similar resolution of 1242× 374.

(a) (b)

Figure 5.2: Examples of challenging lighting conditions. a) dim condition with a far-away
object makes the object nearly fade into shadow. b) too-bright lighting condition
caused by over-exposure or confronting the sun while recording.

5.2 Multi-Object Tracking Evaluation

The evaluation on multi-object tracking (MOT) performance includes many aspects. It is
generally centered around correctness of identity assignment/association, and accuracy of
detection (represented by BBox). In this work, the evaluation adopts HOTA metric [Lui+20]
recommended by KITTI project.

5.2.1 HOTA Metric

The HOTA utilizes the concept of the Jaccard index to evaluate

• the detection accuracy (ACCdet) defined in Eq. 5.1. TP, FP, FN represent true-positive,
false-positive and false-negative, respectively. The true-positive case for localization
and (next point of detection) is determined by matching between the set of all predicted

5 Evaluation 75

and the set of all ground-truth BBoxes by IOU. Note that true-negative case is not
involved and thereby is omitted.

ACCdet =
TPdet

TPdet + FPdet + FNdet

(5.1)

• the localization accuracy (ACCloc). As introduced in 3.2, it is identical to the IOU
(denoted by BBox-IOU) between predicted and GT areas. It is defined as

ACCloc =
1

TPdet

∑
c∈TP

IOUbbox(c). (5.2)

Note that the ACCloc shares the same definition of TP, TF and FN cases.

• The accuracy of identity association (ACCia), expressed in Eq. 5.4, where a single
association metric is denoted by IOUia.

ACCia =
1

TPia

∑
c∈TPdet

IOUia(c), (5.3)

=
1

TPia

∑
c∈TPdet

TPia

TPia + FPia + FNia

. (5.4)

The subscript ia is to distinguish the TP case from the similar concept in ACCdet. As
shown in Fig. 5.3, GT identity is used for determining the identity.

Combining ACCdet, ACCloc), ACCdet together, the HOTA score at IOU threshold IOUbbox =

α is defined

HOTAα =
√

ACCα,det · ACCα,ia

=

√ ∑
c∈TPα,det

IOUα,ia(c)

|TPα,det|+ |FNα,det|+ |FPα,det|
,

(5.5)

which leads to the final HOTA score by calculating the integral at different threshold levels

5 Evaluation 76

t t+1 t+2

GT-1

EST-1

EST-1

GT-2

dist > thresh

Normal Missing Abnormal

FP

t t+1 t+2

t+3

(a)

Dist. > T

Normal Missing Abnormal

FP

t t+1 t+2

(b)

Figure 5.3: Illustration of data association task for multi-object tracking (MOT) task. (a) is
a example case in MOT, where small circles are estimated position and large
squares are GT position in temporal order. The colored dashed lines are the
trajectories formed by estimated positions. At t+ 3 there is a mismatch, where
the identities of EST-1 and EST-2 are switched. (b) illustrates identity assignment.
The radius of the big circle indicates the confidence threshold around the GT
position. At time t+ 1, there is no valid estimates to be matched, while at t+ 2
there is a false-positive case (red circle) and the estimate of the real identity is
out-oft-bound (blue circle).

α, specifically

HOTA =

∫
0<α≤1

HOTAα (5.6)

≈ 1

19

0.95∑
α=0.05
α+=0.05

HOTAα, (5.7)

where the second row is the discretized definition used in actual calculation.

In summary, the HOTA metric is the integration of three-fold accuracy in terms of BBox-
localization precision, detection correctness, and ID-association correctness. The final score
is convenient for benchmarking, while the three separate sub-metrics can also be analyzed
respectively for more details.

5 Evaluation 77

5.2.2 Evaluation on DeepSort

The KITTI MOT tracking benchmark consists of 21 sequences for training and 29 for testing.
In order to guarantee a comprehensive evaluation, only valid targets participate. The validity
is defined in three three aspects: class type and occlusion/truncation condition, and the BBox
size of the object.

Only classes Car and Pedestrian, which contain enough samples, are supported for evaluation.
In this work, we only focus on the Car-alike classes, therefore classes Car, Bus and Truck in
COCO classes are merged together into Car class.

The completeness of the visible part of the object is indicated by occlusion and truncation
levels. Specifically, there are 0 to 3 ascending levels of occlusion, e. g. 0 for no occlusion
and 3 for complete occlusion, while truncation is the percentage of truncated area, e. g. 1.0
truncation means the object is wholly left out of the image. The evaluation applies no limit
on occlusion but only take the zero-truncated object into account.

In addition, the object with BBox size less than 25 px does not participate in evaluation.

With above-mentioned filtering conditions applied to GT data, the HOTA score, as well
as their sub-metric scores are calculated. Based on mechanisms of DeepSort introduced
in Section 3.2, we conducted a series experiments on the hyper-parameters as well small
modifications mentioned in Section 4.2. Quantitative results will be analysed in the next
chapter.

5.3 Depth Map Evaluation

The evaluation of depth map estimation (DME) is basically comparing pixel-wise differ-
ence between GT depth values provided by Velodyne LiDAR and the estimated results by
Monodepth2 [GAB19].

The GT depth map, however, only covers a smaller region compared to the full image range.
As shown in Fig. 5.4, the cropping will also be applied to the estimated depth map to enable
direct comparison and evaluation. Following the solution provided in EIGEN’s work (2014)
[EPF14], we mask out the region that has not been covered by GT during evaluation.

The metrics involved are relative absolute error (RAE), relative squared error (RSE), root-

5 Evaluation 78

mean-square error (RMSE), log of RMSE (RMSLE), accuracy metric δ with a specified
threshold T values (δT). Define depth value at coordinate (i, j) on depth map asD(i, j), and
the metrics mentioned above can be mathematically defined as

RAE =
1

N ×M
N∑
i=N

M∑
j=M

|D̂(i, j)−D(i, j)|
D(i, j)

, (5.8)

RSE =
1

N ×M
N∑
i=N

M∑
j=M

(
D̂(i, j)−D(i, j)

)2
D(i, j)

, (5.9)

RMSE =

√√√√ 1

N ×M
N∑
i=1

M∑
j=1

(
D̂(i, j)−D(i, j)

)2
, (5.10)

RMSLE =

√√√√ 1

N ×M
N∑
i=1

M∑
j=1

(
log(D̂(i, j) + 1)− log (D(i, j) + 1)

)2
, (5.11)

δT =
1

N ×M
N∑
i

M∑
j

[
max

[
D̂(i, j)

D(i, j)
,
D(i, j)

D̂(i, j)

]
< T

]
ivs

, (5.12)

where D̂ denotes depth map estimates andD is the GT. Additionally for Eq. 5.12, T is the
threshold value, and [P]ivs is the Iverson bracket that returns 1 when the condition P is True,
otherwise 0.

5.4 Object Velocity Evaluation

The evaluation of velocity estimation of individual objects is conducted on the CVPR’17
Velocity Challenge dataset. As introduced in Section5.1, the GT only records the velocity of
the last frame of each video.

Unlike previous evaluation, where we only focus on one sub-task (e. g. object detection),
the individual velocity is evaluated on the whole pipeline, including object detection (OD).
tracking, depth map estimation (DME) and object motion derivation (OMD).

As described in 4.1, we can choose either Kalman Filter (KF) or a multi-layer perception
(MLP) to derive the motion data from the depth-map patch. The two methods are tested and

5 Evaluation 79

Figure 5.4: The illustration of raw image (upper), the estimated depth map (lower), and the
actual region covered by GT depth (region highlighted by white dashed lines).

compared with other algorithms that have participated in this challenge.

In addition, we do not evaluate the individual distance, because there is no available bench-
mark for this task until this point . In our main method (KF), individual velocity is derived
from the raw estimates of the depth-map patch. Therefore, we argue that the evaluation of
DME should suffice as a substitute.

Evaluation results will be discussed in Section 6.3.

80

6 Results

6.1 Multi-Object Tracking Evaluation Results

As introduced in Section 5.2.1, the evaluation on multi-object tracking (MOT) task is
conducted on KITTI dataset [Gei+13] with HOTA [Lui+20] metric. The HOTA score alone is
merely used for benchmarking and ranking, i.e. the analysis will be based on its sub-metrics
regarding detection, BBox-location, and identity-association (IA).

Table 6.1: Comparison between DeepSort and other methods taken from KITTI ranking
[Gei+13], in terms of HOTA and accuracy metrics for detection, identity associa-
tion and BBox-localization. Underlined scores are the ones that are closest to our
results (lower and higher respectively). The last column is the total number of ID
switches.

Rank Name Year HOTA Acc-Det Acc-IA Acc-Loc IDSW
78 ODAMOT [GV15] 15 0.37 0.47 0.3 0.79 1110
72 SCEA [Yoo+16] 16 0.43 0.45 0.42 0.82 371
65 mbodSSP [LGU15] 15 0.51 0.59 0.45 0.81 770
50 extraCK [GA18] 18 0.60 0.65 0.55 0.84 520
39 SRK [MBP20] 20 0.64 0.75 0.56 0.86 491
31 IMMDP [XAS15] 15 0.69 0.68 0.70 0.85 211
14 CenterTrack [ZKK20] 20 0.73 0.76 0.71 0.87 254
2 PermaTrack [Tok+21] 21 0.78 0.78 0.78 0.87 258

61 ours 17 0.52 0.48 0.57 0.84 384

There are in total 83 participants in KITTI [Gei+13] MOT tracking task, 24 of which is
online and based on pure monocular vision, while others leverage stereo or laser points as
additional cues. Therefore, as Table 6.1 shows, we display part of the rankings evenly taken
in an ascending manner. For each metric, we underline two algorithms with closes results to
us (with lower and higher scores respectively).

We scored worst on accuracy of detection (Acc-Det). Based on further inspection on the

6 Results 81

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

Acc-Det (0.48)
Re-Det (0.53)
Pr-Det (0.76)
F1-Det (0.63)

(a) Detection

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Acc-IA (0.57)
Re-IA (0.61)
Pr-IA (0.82)
IA-F1 (0.7)

(b) Identity Association

Figure 6.1: The F1-score, precision, recall and accuracy for (a) detection and (b) ID-
association tasks. The x-axis label α is the IOU-threshold to determine whether
a predicted BBox counts as a true-positive case. The mean score of a metric is
marked at legend entry, e. g. 0.57 for IA-accuracy. It is noticeable that precision
is better than recall in both tasks.

recall and precision in Fig. 6.1(a), it is due to bad recall, which indicates our system is
subject to false negative (FN) cases, i.e. some objects have not been successfully detected.
This results from the detector (YOLOv4 [BWL20] in this work), because detecting small/far
objects is more difficult for one-stage detectors. However, the good score BBox-location
(Acc-Loc) indicates that YOLOv4 gives precise BBox prediction.

Regarding the Acc-IA, we outperform SRK [MBP20] algorithm which ranks higher. The
credits should go to the design of the two-step matching process of DeepSort (described
in Section 3.2). As Acc-IA is decomposed into recall and precision as Fig. 6.1(b), recall
metric is also worse, which is similar to the Acc-Det. This is not coincidence, because the
GT-objects missed by detector will also lead to direct failure of matching procedure.

In addition, the total number of identity switch (IDSW) measures how many times the tracker
confuse one identity with another. This mistake often takes place when two objects come
across each other, e. g. at a crossroad. Our method outperforms almost the half of the
participants. This is surprising, because the IA mechanism in DeepSort, unlike most of the
others, is not data-driven (feature extractor excluded) but a straightforward two-step matching
process.

6 Results 82

More discussion over the potential of improvement, cross-comparison and reasoning is
continued in Section 6.4.

6.2 Depth Map Evaluation Results

As introduced in 5.3, the evaluation for depth map estimation (DME) is pixel-wise com-
parison. As Table 6.2 shows, we group results according to the Type of training data,
i.e. monocular image (M), or stereo pair (S)/additional depth supervision (D). Since the
code is our own re-implementation of official code [GAB19], we add the official results
(Monodepth2*) into the table.

Table 6.2: Performance of depth map estimation algorithms. The Type column denotes the
training data: "M" for monocular vision, "S" for stereo vision, and "D" for depth
supervision. The underlined values are the closest ones to our results (lower and
higher respectively), while the bold ones are the best in the corresponding group.
Except that higher δ1.25 (see Eq. 5.12) stands for better performance, others are
the opposite.

Name Type RAE RSE RMSE RMSLE δ1.25 (↑)
SfMLearner [Zho+17] M 0.183 1.595 6.709 0.270 0.734

GeoNet [YS18] M 0.149 1.060 5.567 0.226 0.796
DDVO [Wan+17] M 0.151 1.257 5.583 0.228 0.81

Struct2Depth[Cas+19] M 0.141 1.026 5.291 0.215 0.816
Monodepth2* [GAB19] M 0.115 0.903 4.863 0.193 0.877

Eigen [EPF14] D 0.203 1.548 6.307 0.282 0.702
Garg [Gar+16] S 0.152 1.226 5.849 0.246 0.784

DVSO [Yan+18] D, S 0.097 0.734 4.442 0.187 0.888
DORN [Fu+18] D 0.072 0.307 2.727 0.12 0.932

ours M 0.150 1.112 5.5361 0.224 0.797

In the monocular-vision (M) group, the official result outperforms all others. Unfortunately,
our re-implemented version has not achieved such precision. The Struct2Depth [Cas+19] is
in general the second best, but it comes to our notice that it utilizes additional segmentation
masks and also models individual moving objects. The DDVO[Wan+17] and GeoNet [YS18]
have similar results to use (e. g. only 0.01 difference regarding RAE). SfMLearner [Zho+17]
serves as the baseline algorithm.

Moreover, other DME algorithms that has been trained on depth supervision or stereo pairs

6 Results 83

(but inference on monocular images) are also presented for cross-comparison. The DORN
[Fu+18] is outstanding in both groups that have outperformed Monodepth2 by a clear margin
(e. g. 66.0% in terms of RSE), and exceeds the DVSO [Yan+18], which uses both stereo
pairs and depth supervision.

Figure 6.2: Qualitative comparison between our results and DDVO. The first column is the
original images from KITTI [Gei+13], the second column is the results from
DDVO. It is clear our disparity map demonstrates more details and the edge
between background and objects are more sharp.

Although we didn’t reach the performance of officially reported Monodepth2, our training
results are still satisfying. Qualitative comparison with DDVO [Wan+17] demonstrates that
our disparity highlights more details, and has sharper edges between background and objects.
Furthermore, Fig. 6.3 has shown more sharpness of the disparity map produced by the official
Monodpeth2 [GAB19].

6.3 Object Velocity Evaluation Results

As described in Section 5.4, evaluation has been conducted with both KF-based and MLP-
based methods. The results are shown in Table 6.3. We use our KF-method as the baseline,
since it is a direct derivation without any training, i.e. no utilization of any GT data. The
MLP-based method is an experimental product dedicated to utilizing the GT data to increase
competitiveness.

Due to limited information, we only find the data source for the Rank-1 (by the time of
submission) and the later work by SONG ET AL. [Son+20]. Our MLP-method has similar

6 Results 84

Figure 6.3: Qualitative comparison between ours (lower) and official Monodepth2 [GAB19]
(upper). The latter demonstrates more sharp details regarding the edges.

performance to Rank-2 team but with a slight advantage in terms of far-scenario (distance
greater than 80 m).

Table 6.3: Evaluation results on object-wise velocity estimation. The metric is mean-square
error (MSE), but is divided into four groups (columns): near, middle, far and
average, according to the actual distance. The first two rows are our Kalman-
Filter (KF) method as the baseline. The following rows are the participants’
performances ranked in ascending sequence, and the last row is our MLP-based
method. Bold numbers are the best in the corresponding entry, while underlined
numbers are the ones closest to our MLP-based method.

Methods MSE (mean) MSE (< 20 m) MSE (< 45 m) MSE (< 90 m)
ours, KF 3.91 1.59 4.73 5.42
Rand-3 2.90 0.55 2.21 5.94
Rank-2 1.50 0.25 0.75 3.50

Rank-1 [KMF18] 1.30 0.18 0.66 3.07
Song et al. [Son+20] 0.86 0.15 0.34 2.09

ours, MLP 1.56 0.68 1.66 2.36

Nonetheless, it has come to our attention that the best two algorithms [Son+20], [KMF18]
both use pre-computed detection and tracking results and only evaluate on motion
estimation, which corresponds to DME and OMD in our pipeline. For example, before
performing motion estimation, [KMF18] firstly used GT-BBoxes and off-the-shelf SOT

6 Results 85

trackers to manually generate well-tracked BBox. We, on the contrary, run the whole
pipeline which directly derives the velocity (and distance) from raw images.

Despite the fact that KF-method is outperformed quantitatively, we argue it has more practi-
cality and therefore it is still reckoned as our main method. More reasoning is carried on in
Section 6.4.

6.4 Discussion

In this section, a thorough discussion over quantitative evaluation results along with practical
sense will be conducted. Notice that we do not

The multi-object tracking evaluation has revealed that the weakest point of DeepSort lies
in detection recall. This is due to the "missing" case, i. e. our YOLOv4 detector have skipped
many valid objects. This mainly results from the inherent drawback for one-stage detectors
that they tend to overlook the small objects, namely the far-away vehicles on the image.
Although KITTI [Gei+13] tracking evaluation has limited the minimum size to 25 px, it is
still too small for YOLOv4 to guarantee a robust detection at that scale.

Furthermore, such "missing" also influences the performance the identity association (IA)
in terms of IA recall. Specifically, when the vehicle size is within a range of instability,
approximately 25 to 35 px, the occasional missing makes DeepSort unable to decide the
correct ID, or even repeatedly assigning new ID to it.

Besides detection input, the feature extractor (FE) is also vital to IA. As introduced in
Section 3.2 the cascade matching heavily depends on the performance of FE. In the original
proposal, the author utilizes GT-data to extract identity-wise trajectory across time and
conduct supervised learning [WB18], which helps FE learn visual representation from
different perspectives of actual observation.

However, such well-labelled data is not always available in real-world applications. Therefore,
we have used the unsupervised-learning method (SimCLR [Che+20b]) to directly train an
encoder that learns feature embeddings. Since we only use data augmentation, e. g. random
cropping, changes in lighting conditions, etc., it still might not suffice to simulate a realistic
new perspective. Also, the second matching process based on D-IOU is limited: Once there
is occlusion that abruptly changes BBox shapes, the matching will be more prone to failing.

6 Results 86

Apart from the data augmentation, the feature type could also be enriched, e. g.

• the optical-flow embeddings, which helps IMMDP [XAS15] achieve outstanding
results, especially as an algorithm proposed back in 2015.

• the RGB color histograms used by extraCK [GA18] is also an alternative.

There exists other possibilities of course, e. g. PermaTrack [Tok+21] employs DL-based
method with a spatial-temporal recurrent unit to utilize the full history of estimates.

Apart from the shortcomings, DeepSort is still a practical framework for MOT. To begin
with, its two-step matching process is based on simple calculation (the lightweight FE can
be ignored), which makes computation cost considerably low, reaching over 300 FPS. Also,
the integration of detector and FE is flexible, i.e. we could always replace them with better
algorithms in the future, which promises the potential of continuous improvement.

The evaluation on depth map estimation has confirmed that our re-implemented Monod-
peth2 achieves satisfying results. Even though the quantitative results are not superior to
other competitors based on monocular vision, but the margin is not significant: only approxi-
mately 7% to 9% lower than Struct2Depth [Cas+19] and official Monodepth2 [WB18]. And
qualitative comparison in Fig. 6.2 has demonstrated its advantage over the clarity on objects’
edges.

It should be mentioned that Struct2Depth [Cas+19], whose results are slightly better than
ours, utilizes additional GT segmentation masks to: 1) mask out moving objects; 2) add
additional object-distance loss based on pre-knowledge of real-world size. These auxiliary
constraints might help the model learn more precise depth map. Although similar ideas have
been experimented with as introduced in Section 4.2, we did not employ GT segmentation
mask but YOLOv4-predicted BBoxes as rough masks to keep the work in unsupervised style.
Unfortunately, these experiments did not return good results, and therefore we have to forfeit
them for now.

The object motion estimation evaluation reveals our weakness regarding precision. How-
ever, it is argued that the quantitative results do not suffice to undermine the effectiveness of
our object motion estimation (OME) system. In other words, there are flaws centered around
the CVPR’17 Velocity Challenge dataset as well as its evaluation settings.

First of all, realistic motion estimation should be a continuous process. This evaluation of
dataset, however, is only conducted on one single frame per clip. This setting overlooks the

6 Results 87

significance of stability in practical use.

As we apply our MLP-based OME system to a video clip, the velocity estimates are highly
incoherent. Although we have not experimented on other competitors’ algorithms ([Son+20]
and [KMF18]), this problem is very probable, because either of them takes estimation history
into account.

This is exactly the reason we still reckon KF-based method as the primary choice, despite
that it scores lowest in this evaluation. Because KF, as introduced in Section 2.4.3, models
the motion trajectory of an object and is updated with time. Therefore, the final motion data
is estimated based on both new and historical estimates. This also leads to a steady velocity
estimation across time, which fits the fact that the vehicle’s speed will not abruptly change
between each frame (i. e. within an interval shorter than 0.1 s).

Nonetheless, there is still much potential for improvements, for example: Frame-wise update
for KF might not be enough; long-time occlusion cannot be well handled, especially if it is
too near to the camera. Since OME reflects the combined performance of OD, MOT, DME
and OMD, any improvement on the above-mentioned components should lead to rise of
overall performance.

88

7 Conclusion

In this work, a pipeline is established to estimate relative velocity and distance estimation for
each object based on single images recorded from a moving camera. Although algorithms
dedicated for object detection (OD), tracking, depth map estimation (DME) have been well-
developed in their own domains, there has not been a well-developed framework flexible
enough to integrate them all together to estimate individual object motion.

To begin with, we investigated representative algorithms in the domains mentioned above in
Chapter 3. In addition, two methods, dependent of the availability of GT, are proposed for
the final procedure of object motion derivation (OMD).

In Chapter 4, the implementation details of the overall object motion estimation (OME)
pipeline is elaborated, which integrates separate algorithms together. And in Section 4.2 we
presented our main contributions, including important experiments and modifications.

In Chapter 5, evaluations are carried out firstly on respective algorithms’ performance
regarding their own task to find our their own pros and cons. And finally the object velocity
estimation is evaluated on CVPR’17 Velocity Challenge dataset for the performance of the
OME pipeline.

The evaluation results are presented in Chapter 6. It reveals that the main weak spots lie in

• detector’s sensitiveness to the smaller objects;

• robustness of feature-vector matching mechanism for in tracker;

• more integration between each components for globally finest estimates.

As expected, it is found that our system can produce stable motion estimates for ve-
hicles up to the middle range (with a size of approximately greater than 40 px on the
image). And the inference speed reaches 10 Hz on a 7th-Gen Intel® Core™ i7 processor
and Nvidia GTX 1060 Max-Q GPU. Last but not least, our OME pipeline (except for the
detector) can be trained/tuned in an unsupervised manner.

7 Conclusion 89

7.1 Future Work

In this section, practical considerations for possible improvements are discussed.

First of all, there exists the alternative that four components (OD, tracking, DME and OMD)
can be integrated into two or three. For example, detection and tracking might be able to
merged into one, e. g. the FairMOT [Zha+20], where a globally optimal estimates for tracked
BBOx can be directly obtained. Similarly, the DME and OME could also be merged, like in
SONG ET AL. [Son+20].

And if we stick to the current pipeline, the detector could be replaced with one that produces
instance segmentation, e. g. [Bol+20] instead of mere BBox. Since the segmentation mask
will enclose the actual profile of the object, it could not only help feature extractor of tracker
produce a better visual representation, but also help the MLP-based OMD methods to focus
on the object area.

Furthermore, the KF could be utilized in more flexible way. In this work, we follow the most
typical implementation where KF is updated per frame. However, adjustments on the update
interval might provide more temporal hints from the previous trajectory, especially when
vehicle-related objects’ motion usually does not fluctuate dramatically.

90

Appendix

.1 Additional Details on Algorithms

The sigmoid function is a mathematical function with numerous variants that produces "S"
curve. The variant used in this work is the logistic function:

f(x) =
1

1 + e−x
. (.1)

The cross-stage partial network (CSPNet) reconstructs the flow of the data as the Fig. .1:
Instead of letting the data flow directly through the dense layers (Conv-layer, BN, etc.),
the base input layer is now split into two parts, where one part is for normal dense-layer
processing while the other is directly copied and concatenated with dense-layer output to
form the output of one block. This iterates for a designated number of dense blocks. The
output of the all dense blocks will be concatenated again with the first half of base input
layer, and go through the final transition layer to produce the final output.

The CSPNet can help normal backbones (e. g., ResNet50) reduce a great amount of compu-
tation by about 20% and thereby increase the inference speed. In addition, the it helps the
original network achieve better performance, because the cross-connection manage to fuse
information at different levels, which enhance the learning ability of the CNN.

Table .1 displays the network structure of decoders of depth net and pose net of Monodepth2
[GAB19] (introduced in Section 3.3).

The structural similarity index measure (SSIM) between two images A and B is defined as

7 Conclusion 91

Input

ResBlock × N

Transition

Output

(a)

Input

Input (part1) Input (part2)

ResBlock × N

Transition

Output

(b)

Figure .1: Comparison between the architecture of a normal ResNet (a) and the one modified
according to CSP (b). In a normal ResBlock the input is fully fed to the one or
more ResBlock(s), and passed through a transition layer which down-sample the
feature maps. For a CSP-modified ResNet, the Input is split into two parts, and
only one part will go through the operations in (a), while the other part is directly
concatenated to the output.

follows:

L(A,B) =
2uAuB + C1

u2A + u2B + C1

, (.2)

C(A,B) =
2σAσB + C2

σ2
A + σ2

B + C2

, (.3)

S(A,B) =
σAB + C3

σAσB + C3

, (.4)

SSIM(A,B) = L(A,B) · C(A,B) · S(A,B), (.5)

where u and σ stands mean and variance; σAB is the covariance of two images; and the Cs
are constants to avoid zero value of denominator. According to the author’s experiments,
there is simplification C3 = C2/2, which leads the Eq. .5 to the simplified form:

SSIM(A,B) =
(2µAuB + c1) (2σAB + C2)

(µ2
A + µ2

B + C1) (σ2
A + σ2

B + C2)
, (.6)

where empirically C1 = 0.01, C2 = 0.03.

7 Conclusion 92

Table .1: The overview of decoders of Depth Net and Pose Net, respectively. The param-
eters k (kernel), s (stride) and chs (channel numebr) defines the kernel shape of
convolution layer. e-convN is the skip connection from the encoder at scale N
(scale 0 is the encoder output). The upconv is the intermediate output and ↑ is the
up-sample operation, while ↓ scale is the down-scaled resolution relative to the
original resolution. The disp-convN is the output layer to estimate the disparity
map at scale N.

Depth Decoder
layer k s chs ↓ res input activation
upconv5 3 1 256 32 e-conv5 ELU [CUH16]
d-conv5 3 1 256 16 ↑ upconv5, e-conv4 ELU
upconv4 3 1 128 16 d-conv5 ELU
d-conv4 3 1 128 8 ↑ upconv4, e-conv3 ELU
disp-conv4 3 1 1 1 d-conv4 Sigmoid
upconv3 3 1 64 8 d-conv4 ELU
d-conv3 3 1 64 4 ↑ upconv3, e-conv2 ELU
disp-conv3 3 1 1 1 d-conv3 Sigmoid
upconv2 3 1 32 4 d-conv3 ELU
d-conv2 3 1 32 2 ↑ upconv2, e-conv1 ELU
disp-conv2 3 1 1 1 d-conv2 Sigmoid
upconv1 3 1 16 2 d-conv2 ELU
d-conv1 3 1 16 1 ↑ upconv1 ELU
disp-conv1 3 1 1 1 d-conv1 Sigmoid

Pose Decoder
layer k s chs ↓ res input activation
p-conv0 1 1 256 32 e-conv5 ReLU [NH10]
p-conv1 3 1 256 32 p-conv0 ReLU
p-conv2 3 1 256 32 p-conv 1 ReLU
p-conv3 1 1 6 32 p-conv3 −

.2 Additional Implementation Details

Specifically for a detected BBox, Bod = [bodl , b
od
t , b

od
r , b

od
b], defined in ltrb convention, the

the correspondingBdme = Bod is firstly initialized, then the adjustment occurs in vertical

7 Conclusion 93

direction (i. e. bt and bt) in following order:

s := W dme/640, (.7)

bdme
t := max

[
0, bodt − offset

]
/s, (.8)

bdme
b := min

[
Hdme + offset, l − offset

]
/s, (.9)

Bdme := [bodl , b
dme
t , bodr , b

dme
b] (.10)

where s is the scaling factor to resize the center-cropped image Idme. Since the center
cropping only takes place before the scaling, the same scaling factor can be applied to height
and width.

.3 Additional Evaluation Details

As the Fig. .3 illustrates, the data is collected through the wagon equipped with sensors.
Specifically, the cameras provide image data, while ground truth of depth and global position
is provided by a Velodyne laser scanner and a GPS, respetively.

KITTI’s camera intrinsic parameters are given in form of matrix

Kkitti =

fx = 720.0 0 ppx = 641.0 0

0 fy = 720.0 ppy = 192.0 0

0 0 1 0

0 0 0 1

 px (.11)

The camera intrinsic matrix of VeloChallenge dataset is

Kvelo =

fx = 714.2 0 ppx = 713.9 0

0 fy = 710.4 ppy = 376.3 0

0 0 1 0

0 0 0 1

 px (.12)

• The provided principal point is inaccurate, which has been confirmed by KAMPELMÜH-
LER’s work [KMF18]. Therefore, we adopt modification on the principal point position
suggested in his work. Specifically, ppx is corrected to from 675.6 px to 713.9 px (px

is the unit of pixel grid).

7 Conclusion 94

(a)

(b)

Figure .2: The function panel of our GUI for (a) detection, and (b) tracking, depth estimation
and object motion derivation. The function panel of detection controls the main
estimation system, while the other panel contains more detailed visualization
options.

• The BBox, as shown in Fig. 5.1 annotation is not accurate enough.

• There exist many repeated or highly-similar video clips, which further undermines the
richness of the data.

7 Conclusion 952

Fig. 2. Recording Zone. This figure shows the GPS traces of our recordings
in the metropolitan area of Karlsruhe, Germany. Colors encode the GPS signal
quality: Red tracks have been recorded with highest precision using RTK
corrections, blue denotes the absence of correction signals. The black runs
have been excluded from our data set as no GPS signal has been available.

A. Data Description

All sensor readings of a sequence are zipped into a single
file named date_drive.zip, where date and drive are
placeholders for the recording date and the sequence number.
The directory structure is shown in Fig. 4. Besides the raw
recordings (’raw data’), we also provide post-processed data
(’synced data’), i.e., rectified and synchronized video streams,
on the dataset website.

Timestamps are stored in timestamps.txt and per-
frame sensor readings are provided in the corresponding data
sub-folders. Each line in timestamps.txt is composed
of the date and time in hours, minutes and seconds. As the
Velodyne laser scanner has a ’rolling shutter’, three timestamp
files are provided for this sensor, one for the start position
(timestamps_start.txt) of a spin, one for the end
position (timestamps_end.txt) of a spin, and one for the
time, where the laser scanner is facing forward and triggering
the cameras (timestamps.txt). The data format in which
each sensor stream is stored is as follows:

a) Images: Both, color and grayscale images are stored
with loss-less compression using 8-bit PNG files. The engine
hood and the sky region have been cropped. To simplify
working with the data, we also provide rectified images. The
size of the images after rectification depends on the calibration
parameters and is ∼ 0.5 Mpx on average. The original images
before rectification are available as well.

b) OXTS (GPS/IMU): For each frame, we store 30 differ-
ent GPS/IMU values in a text file: The geographic coordinates
including altitude, global orientation, velocities, accelerations,
angular rates, accuracies and satellite information. Accelera-

Fig. 3. Sensor Setup. This figure illustrates the dimensions and mounting
positions of the sensors (red) with respect to the vehicle body. Heights above
ground are marked in green and measured with respect to the road surface.
Transformations between sensors are shown in blue.

date/
date_drive/

date_drive.zip
image_0x/ x={0,..,3}

data/
frame_number.png

timestamps.txt
oxts/

data/
frame_number.txt

dataformat.txt
timestamps.txt

velodyne_points/
data/

frame_number.bin
timestamps.txt
timestamps_start.txt
timestamps_end.txt

date_drive_tracklets.zip
tracklet_labels.xml

date_calib.zip
calib_cam_to_cam.txt
calib_imu_to_velo.txt
calib_velo_to_cam.txt

Fig. 4. Structure of the provided Zip-Files and their location within a
global file structure that stores all KITTI sequences. Here, ’date’ and ’drive’
are placeholders, and ’image 0x’ refers to the 4 video camera streams.

tions and angular rates are both specified using two coordinate
systems, one which is attached to the vehicle body (x, y, z) and
one that is mapped to the tangent plane of the earth surface
at that location (f, l, u). From time to time we encountered
short (∼ 1 second) communication outages with the OXTS
device for which we interpolated all values linearly and set
the last 3 entries to ’-1’ to indicate the missing information.
More details are provided in dataformat.txt. Conversion
utilities are provided in the development kit.

c) Velodyne: For efficiency, the Velodyne scans are
stored as floating point binaries that are easy to parse using
the C++ or MATLAB code provided. Each point is stored with
its (x, y, z) coordinate and an additional reflectance value (r).
While the number of points per scan is not constant, on average
each file/frame has a size of ∼ 1.9 MB which corresponds
to ∼ 120, 000 3D points and reflectance values. Note that the
Velodyne laser scanner rotates continuously around its vertical
axis (counter-clockwise), which can be taken into account
using the timestamp files.

B. Annotations

For each dynamic object within the reference camera’s field
of view, we provide annotations in the form of 3D bounding
box tracklets, represented in Velodyne coordinates. We define
the classes ’Car’, ’Van’, ’Truck’, ’Pedestrian’, ’Person (sit-
ting)’, ’Cyclist’, ’Tram’ and ’Misc’ (e.g., Trailers, Segways).
The tracklets are stored in date_drive_tracklets.xml.

Figure .3: Equipment setup for data acquisition of KITTI dataset. There are two stereo
camera sets for grayscale and RGB images, respectively. A GPS is used to collect
position data in world coordinate system, while a IMU is to measure the egomotion
of the vehicle. This figure is from the original work [Gei+13].

As the Fig. .4 shows, the HOTA metric scores 0.52, while the accuracy scores of detection.
location and IA are 0.45, 0.57 and 0.84 respectively.

7 Conclusion 96

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

HOTA (0.52)
Acc-Det (0.48)
Acc-IA (0.57)
Acc-Loc (0.84)

Figure .4: The scores of HOTA of sub-metrics (i. e. accuracy of detection, location and IA).
The x-axis label α (Eq. 5.5) is the IOU-threshold to determine whether a predicted
BBox is counted as a true-positive (TP) case. As α increases, the location accuracy
(Acc-Loc) grows, because location is also measured by BBox-IOU. However,
for other metrics, a high threshold for BBox means low tolerance for potentially
matched BBox. Therefore, more TP cases are reckoned as FN cases as α increases.

97

Bibliography

[Bew+16] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. “Sim-
ple online and realtime tracking”. In: 2016 IEEE International Conference
on Image Processing (ICIP) (Sept. 2016). DOI: 10.1109/icip.2016.
7533003.

[BLK01] Y. Bar-Shalom, Xiaorong Li, and T. Kirubarajan. “Estimation with Applications
to Tracking and Navigation: Theory, Algorithms and Software”. In: 2001.

[Bol+10] David S. Bolme, J. Ross Beveridge, Bruce A. Draper, and Yui Man Lui. “Visual
object tracking using adaptive correlation filters”. In: 2010 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition. 2010, pp. 2544–
2550. DOI: 10.1109/CVPR.2010.5539960.

[Bol+20] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. “YOLACT++:
Better Real-time Instance Segmentation”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020), pp. 1–1. ISSN: 1939-3539. DOI:
10.1109/tpami.2020.3014297.

[Bra00] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

[BWL20] Alexey Bochkovskiy, Chien-Yao Wang, and H. Liao. “YOLOv4: Optimal Speed
and Accuracy of Object Detection”. In: ArXiv abs/2004.10934 (2020).

[Can86] J Canny. “A Computational Approach to Edge Detection”. In: IEEE Trans.
Pattern Anal. Mach. Intell. 8.6 (June 1986). ISSN: 0162-8828. DOI: 10.1109/
TPAMI.1986.4767851.

[Cas+19] Vincent Casser, Soeren Pirk, Reza Mahjourian, and Anelia Angelova. “Depth
Prediction without the Sensors: Leveraging Structure for Unsupervised Learn-
ing from Monocular Videos”. In: Thirty-Third AAAI Conference on Artificial
Intelligence (AAAI-19). 2019.

[Che+20a] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. “GridMask Data
Augmentation”. In: ArXiv abs/2001.04086 (2020).

https://doi.org/10.1109/icip.2016.7533003
https://doi.org/10.1109/icip.2016.7533003
https://doi.org/10.1109/CVPR.2010.5539960
https://doi.org/10.1109/tpami.2020.3014297
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851

Bibliography 98

[Che+20b] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A
Simple Framework for Contrastive Learning of Visual Representations. 2020.
arXiv: 2002.05709 [cs.LG].

[CUH16] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accu-
rate Deep Network Learning by Exponential Linear Units (ELUs). 2016. arXiv:
1511.07289 [cs.LG].

[Dod08] Yadolah Dodge. “Chi-square Distribution”. In: The Concise Encyclopedia of
Statistics. New York, NY: Springer New York, 2008, pp. 70–72. ISBN: 978-0-
387-32833-1. DOI: 10.1007/978-0-387-32833-1_54.

[Dua+19] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi
Tian. “CenterNet: Keypoint Triplets for Object Detection”. In: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV). 2019, pp. 6568–6577.
DOI: 10.1109/ICCV.2019.00667.

[EPF14] David Eigen, Christian Puhrsch, and Rob Fergus. Depth Map Prediction from a
Single Image using a Multi-Scale Deep Network. 2014. arXiv: 1406.2283
[cs.CV].

[Fu+18] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and
Dacheng Tao. Deep Ordinal Regression Network for Monocular Depth Es-
timation. 2018. arXiv: 1806.02446 [cs.CV].

[GA18] Gültekin Gündüz and Tankut Acarman. “A lightweight online multiple object
vehicle tracking method”. In: 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE. 2018, pp. 427–432.

[GAB17] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised
Monocular Depth Estimation with Left-Right Consistency. 2017. arXiv: 1609.
03677 [cs.CV].

[GAB19] C. Godard, Oisin Mac Aodha, and G. Brostow. “Digging Into Self-Supervised
Monocular Depth Estimation”. In: 2019 IEEE/CVF International Conference
on Computer Vision (ICCV) (2019), pp. 3827–3837.

[Gar+16] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. Unsupervised
CNN for Single View Depth Estimation: Geometry to the Rescue. 2016. arXiv:
1603.04992 [cs.CV].

[Gei+13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. “Vision
meets Robotics: The KITTI Dataset”. In: International Journal of Robotics
Research (IJRR) (2013).

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/1511.07289
https://doi.org/10.1007/978-0-387-32833-1_54
https://doi.org/10.1109/ICCV.2019.00667
https://arxiv.org/abs/1406.2283
https://arxiv.org/abs/1406.2283
https://arxiv.org/abs/1806.02446
https://arxiv.org/abs/1609.03677
https://arxiv.org/abs/1609.03677
https://arxiv.org/abs/1603.04992

Bibliography 99

[Gir+14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation”. In:
2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014,
pp. 580–587. DOI: 10.1109/CVPR.2014.81.

[Gir15] Ross Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on
Computer Vision (ICCV). 2015, pp. 1440–1448. DOI: 10.1109/ICCV.2015.
169.

[Gor+19] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia Angelova. “Depth
From Videos in the Wild: Unsupervised Monocular Depth Learning From Un-
known Cameras”. In: 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). 2019, pp. 8976–8985. DOI: 10.1109/ICCV.2019.00907.

[GV15] Adrien Gaidon and Eleonora Vig. “Online domain adaptation for multi-object
tracking”. In: arXiv preprint arXiv:1508.00776 (2015).

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition”. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016, pp. 770–778. DOI: 10.1109/
CVPR.2016.90.

[He+18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.
2018. arXiv: 1703.06870.

[Hen+15] João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. “High-
Speed Tracking with Kernelized Correlation Filters”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 37.3 (2015), pp. 583–596. DOI:
10.1109/TPAMI.2014.2345390.

[HS17] K. Hata and S. Savarese. “CS231A Course Notes 1: Camera Models”. In: 2017.
URL: https://web.stanford.edu/class/cs231a.

[HS88] C. G. Harris and M. Stephens. “A Combined Corner and Edge Detector”. In:
Alvey Vision Conference. 1988.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: Proceedings of
the 32nd International Conference on International Conference on Machine
Learning - Volume 37. ICML’15. Lille, France: JMLR.org, 2015, pp. 448–456.

[Jad+16] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu.
Spatial Transformer Networks. 2016. arXiv: 1506.02025 [cs.CV].

https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2019.00907
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1703.06870
https://doi.org/10.1109/TPAMI.2014.2345390
https://web.stanford.edu/class/cs231a
https://arxiv.org/abs/1506.02025

Bibliography 100

[Kal60] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”.
In: Journal of Basic Engineering 82.1 (Mar. 1960), pp. 35–45. ISSN: 0021-9223.
DOI: 10.1115/1.3662552.

[KMF18] Moritz Kampelmühler, Michael G. Müller, and Christoph Feichtenhofer.
Camera-based vehicle velocity estimation from monocular video. 2018. arXiv:
1802.07094.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks”. In: Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume
1. NIPS’12. Lake Tahoe, Nevada: Curran Associates Inc., 2012, pp. 1097–1105.

[KSL17] Yevhen Kuznietsov, Jörg Stückler, and Bastian Leibe. “Semi-Supervised Deep
Learning for Monocular Depth Map Prediction”. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 2215–2223. DOI:
10.1109/CVPR.2017.238.

[KY55] H. W. Kuhn and Bryn Yaw. “The Hungarian method for the assignment prob-
lem”. In: Naval Res. Logist. Quart (1955), pp. 83–97.

[LGU15] Philip Lenz, Andreas Geiger, and Raquel Urtasun. “Followme: Efficient online
min-cost flow tracking with bounded memory and computation”. In: Proceed-
ings of the IEEE International Conference on Computer Vision. 2015, pp. 4364–
4372.

[Li+18] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. “High Performance
Visual Tracking with Siamese Region Proposal Network”. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018, pp. 8971–8980.
DOI: 10.1109/CVPR.2018.00935.

[Liu+16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. “SSD: Single Shot MultiBox Detector”.
In: Computer Vision – ECCV 2016. Ed. by Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling. Cham: Springer International Publishing, 2016, pp. 21–37.
ISBN: 978-3-319-46448-0.

[Llo82] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on
Information Theory 28.2 (1982), pp. 129–137. DOI: 10.1109/TIT.1982.
1056489.

https://doi.org/10.1115/1.3662552
https://arxiv.org/abs/1802.07094
https://doi.org/10.1109/CVPR.2017.238
https://doi.org/10.1109/CVPR.2018.00935
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489

Bibliography 101

[Low99] D.G. Lowe. “Object recognition from local scale-invariant features”. In: Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision.
Vol. 2. 1999, 1150–1157 vol.2. DOI: 10.1109/ICCV.1999.790410.

[Lui+20] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip Torr, Andreas Geiger,
Laura Leal-Taixé, and Bastian Leibe. “HOTA: A Higher Order Metric for
Evaluating Multi-object Tracking”. In: International Journal of Computer
Vision 129.2 (Oct. 2020), pp. 548–578. ISSN: 1573-1405. DOI: 10.1007/
s11263-020-01375-2.

[MBP20] Dmytro Mykheievskyi, Dmytro Borysenko, and Viktor Porokhonskyy. “Learn-
ing local feature descriptors for multiple object tracking”. In: Proceedings of
the Asian Conference on Computer Vision. 2020.

[NH10] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference
on International Conference on Machine Learning. ICML’10. Haifa, Israel:
Omnipress, 2010, pp. 807–814. ISBN: 9781605589077.

[Nis04] D. Nister. “An efficient solution to the five-point relative pose problem”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 26.6 (2004),
pp. 756–770. DOI: 10.1109/TPAMI.2004.17.

[Qiu+19] Jiaxiong Qiu, Zhaopeng Cui, Yinda Zhang, Xingdi Zhang, Shuaicheng Liu,
Bing Zeng, and Marc Pollefeys. “DeepLiDAR: Deep Surface Normal Guided
Depth Prediction for Outdoor Scene From Sparse LiDAR Data and Single Color
Image”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). June 2019.

[RD06] Edward Rosten and Tom Drummond. “Machine Learning for High-Speed
Corner Detection”. In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis,
Horst Bischof, and Axel Pinz. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 430–443. ISBN: 978-3-540-33833-8.

[Ren+17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 39.6 (2017),
pp. 1137–1149. DOI: 10.1109/TPAMI.2016.2577031.

[RF18] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”.
In: arXiv (2018).

https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1007/s11263-020-01375-2
https://doi.org/10.1007/s11263-020-01375-2
https://doi.org/10.1109/TPAMI.2004.17
https://doi.org/10.1109/TPAMI.2016.2577031

Bibliography 102

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015. arXiv: 1505.04597
[cs.CV].

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
representations by back-propagating errors”. In: 323.6088 (Oct. 1986), pp. 533–
536. DOI: 10.1038/323533a0.

[Rub+11] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. “ORB: An
efficient alternative to SIFT or SURF”. In: 2011 International Conference
on Computer Vision. 2011, pp. 2564–2571. DOI: 10.1109/ICCV.2011.
6126544.

[Son+20] Zhenbo Song, Jianfeng Lu, Tong Zhang, and Hongdong Li. End-to-end Learn-
ing for Inter-Vehicle Distance and Relative Velocity Estimation in ADAS with a
Monocular Camera. 2020. arXiv: 2006.04082.

[SSZ01] D. Scharstein, R. Szeliski, and R. Zabih. “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms”. In: Proceedings IEEE Workshop
on Stereo and Multi-Baseline Vision (SMBV 2001). 2001, pp. 131–140. DOI:
10.1109/SMBV.2001.988771.

[SZ15] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2015. arXiv: 1409.1556.

[Tok+21] Pavel Tokmakov, Jie Li, Wolfram Burgard, and Adrien Gaidon. “Learning to
Track with Object Permanence”. In: arXiv preprint arXiv:2103.14258 (2021).

[Wan+04] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. “Image quality
assessment: from error visibility to structural similarity”. In: IEEE Transactions
on Image Processing 13.4 (2004), pp. 600–612. DOI: 10.1109/TIP.2003.
819861.

[Wan+17] Chaoyang Wang, Jose Miguel Buenaposada, Rui Zhu, and Simon Lucey. Learn-
ing Depth from Monocular Videos using Direct Methods. 2017. arXiv: 1712.
00175 [cs.CV].

[Wan+18] Chaoyang Wang, José Miguel Buenaposada, Rui Zhu, and Simon Lucey.
“Learning Depth from Monocular Videos Using Direct Methods”. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018,
pp. 2022–2030. DOI: 10.1109/CVPR.2018.00216.

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://arxiv.org/abs/2006.04082
https://doi.org/10.1109/SMBV.2001.988771
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://arxiv.org/abs/1712.00175
https://arxiv.org/abs/1712.00175
https://doi.org/10.1109/CVPR.2018.00216

Bibliography 103

[Wan+19] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Camp-
bell, and Kilian Weinberger. “Pseudo-LiDAR from Visual Depth Estimation:
Bridging the Gap in 3D Object Detection for Autonomous Driving”. In: CVPR.
2019.

[Wan+20] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen,
Jun-Wei Hsieh, and I-Hau Yeh. “CSPNet: A New Backbone that can Enhance
Learning Capability of CNN”. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW). 2020, pp. 1571–1580.
DOI: 10.1109/CVPRW50498.2020.00203.

[WB18] Nicolai Wojke and Alex Bewley. “Deep Cosine Metric Learning for Person Re-
identification”. In: 2018 IEEE Winter Conference on Applications of Computer
Vision (WACV) (Mar. 2018). DOI: 10.1109/wacv.2018.00087.

[WBP17] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. “Simple online and realtime
tracking with a deep association metric”. In: 2017 IEEE International Con-
ference on Image Processing (ICIP). 2017, pp. 3645–3649. DOI: 10.1109/
ICIP.2017.8296962.

[XAS15] Yu Xiang, Alexandre Alahi, and Silvio Savarese. “Learning to track: Online
multi-object tracking by decision making”. In: Proceedings of the IEEE inter-
national conference on computer vision. 2015, pp. 4705–4713.

[Yan+18] Nan Yang, Rui Wang, Jörg Stückler, and Daniel Cremers. Deep Virtual Stereo
Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse
Odometry. 2018. arXiv: 1807.02570 [cs.CV].

[Yoo+16] Ju Hong Yoon, Chang-Ryeol Lee, Ming-Hsuan Yang, and Kuk-Jin Yoon. “On-
line multi-object tracking via structural constraint event aggregation”. In: Pro-
ceedings of the IEEE Conference on computer vision and pattern recognition.
2016, pp. 1392–1400.

[YS18] Zhichao Yin and Jianping Shi. GeoNet: Unsupervised Learning of Dense Depth,
Optical Flow and Camera Pose. 2018. arXiv: 1803.02276 [cs.CV].

[Zha+20] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu.
FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object
Tracking. 2020. arXiv: 2004.01888.

https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1109/wacv.2018.00087
https://doi.org/10.1109/ICIP.2017.8296962
https://doi.org/10.1109/ICIP.2017.8296962
https://arxiv.org/abs/1807.02570
https://arxiv.org/abs/1803.02276
https://arxiv.org/abs/2004.01888

Bibliography 104

[Zhe+19] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei
Ren. Distance-IoU Loss: Faster and Better Learning for Bounding Box Re-
gression. 2019. arXiv: 1911.08287. URL: https://arxiv.org/abs/
1911.08287.

[Zho+17] Tinghui Zhou, Matthew Brown, Noah Snavely, and David Lowe. “Unsupervised
Learning of Depth and Ego-Motion from Video”. In: Computer Vision and
Pattern Recognition. 2017. URL: https://arxiv.org/abs/1704.
07813.

[ZK15] Sergey Zagoruyko and Nikos Komodakis. Learning to Compare Image Patches
via Convolutional Neural Networks. 2015. arXiv: 1504.03641.

[ZK17] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. 2017. arXiv:
1605.07146.

[ZKK20] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. “Tracking objects as
points”. In: European Conference on Computer Vision. Springer. 2020, pp. 474–
490.

[ŽL16] Jure Žbontar and Yann LeCun. Stereo Matching by Training a Convolutional
Neural Network to Compare Image Patches. 2016. arXiv: 1510.05970.

[ZP19] Zhipeng Zhang and Houwen Peng. “Deeper and Wider Siamese Networks for
Real-Time Visual Tracking”. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 2019, pp. 4586–4595. DOI: 10.1109/
CVPR.2019.00472.

https://arxiv.org/abs/1911.08287
https://arxiv.org/abs/1911.08287
https://arxiv.org/abs/1911.08287
https://arxiv.org/abs/1704.07813
https://arxiv.org/abs/1704.07813
https://arxiv.org/abs/1504.03641
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1510.05970
https://doi.org/10.1109/CVPR.2019.00472
https://doi.org/10.1109/CVPR.2019.00472

	Titel
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Structure of the Thesis

	2 Fundamentals
	2.1 Basic Geometry
	2.1.1 Geometric Transformation
	2.1.2 Perspective Camera Model
	2.1.3 Triangulation with Epipolar Geometry
	2.1.4 Image Inverse Warping

	2.2 Deep Learning Basics
	2.2.1 Convolutional Neural Network
	2.2.2 Residual Network

	2.3 Visual Object Recognition
	2.3.1 Object Detection
	2.3.2 Object Tracking

	2.4 Motion Estimation
	2.4.1 Egomotion Estimation
	2.4.2 Distance and Velocity Estimation
	2.4.3 Kalman Filter

	3 Applied Algorithms
	3.1 Object Detection with YOLOv4
	3.2 DeepSort Tracking
	3.2.1 Tracking Pipeline
	3.2.2 Feature Extractor

	3.3 Monodepth2 for Depth Estimation
	3.3.1 The Depth Net and Pose Net
	3.3.2 The Training Strategy

	3.4 Object Motion Derivation
	3.4.1 Supervised-Learning Method
	3.4.2 Generalized Method for Unfamiliar Scenes

	4 Proposed Object Motion Estimation System
	4.1 Overall Pipeline
	4.1.1 The General Solutions
	4.1.2 Implementation Details

	4.2 Highlights and Main Contributions
	4.2.1 Additional Features

	5 Evaluation
	5.1 Datasets
	5.1.1 KITTI Dataset
	5.1.2 CVPR'17 Velocity Challenge Dataset

	5.2 Multi-Object Tracking Evaluation
	5.2.1 HOTA Metric
	5.2.2 Evaluation on DeepSort

	5.3 Depth Map Evaluation
	5.4 Object Velocity Evaluation

	6 Results
	6.1 Multi-Object Tracking Evaluation Results
	6.2 Depth Map Evaluation Results
	6.3 Object Velocity Evaluation Results
	6.4 Discussion

	7 Conclusion
	7.1 Future Work

	Appendix
	.1 Additional Details on Algorithms
	.2 Additional Implementation Details
	.3 Additional Evaluation Details

	Bibliography

