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A B S T R A C T

This diploma thesis is addressed to the reconstruction of vector fields
from their topological structures. In this case, only three-dimensional and
parameter independent fields are considered.

Reconstruction means that only with the help of its topological struc-
tures, every vector within the field can be computed. This involves two
proceedings depending on whether the field is global or local. Each has its
own approach and chapter.

The subsequent evaluation shows how well and under which circum-
stances the approaches can be used for a reconstruction.

This work includes the reconstruction of vectors as well as of so-called
Separation Curves from critical points of the vector field. Boundary Switch
Curve are also taken into account as topological structures. Additionally, it
is demonstrated how the information of vectors from one to another point
in the domain can be interpolated and diffused.

Z U S A M M E N FA S S U N G

Diese Diplomarbeit beschäftigt sich mit dem Thema der Rekonstruktion
von Vektorfeldern aus ihren topologischen Strukturen. Dabei wird aus-
schließlich auf dreidimensionale und parameterunabhängige Vektorfelder
eingegangen.

Rekonstruktion bedeutet dabei, dass so gut wie möglich aus seinen
topologischen Strukturen das Ursprungsvektorfeld errechnet wird. Das
Vektorfeld kann lokal oder global vorliegen, beides führt zu unterschiedli-
chen Rekonstruktionsansätzen, denen jeweils ein Kapitel gewidmet ist.

Abschließend werden die vorgestellten Verfahren und ihre Ergebnisse
evaluiert, um zu zeigen inwieweit und unter welchen Bedingungen sie für
die Rekonstruktion eingesetzt werden können.

Wichtige Einzelthemen sind die Rekonstruktion von Vektoren und die
Konstruktion von sogenannten Separation Curves aus kritischen Punkten
des Vektorfelds. Berücksichtigung finden als topologische Strukturen auch
Boundary Switch Curves. Zusätzlich wird gezeigt wie, Vektorinformationen
an einem Ort des Definitionsbereichs an andere Punkte interpoliert und
diffundiert werden können.
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1
I N T R O D U C T I O N

All processes of hydrodynamics, whether in an ocean or in a glass of water,
whether in gases or in fluids, they can be described by and analysed with
vector fields. This is done to improve the properties of the substance and
the objects which are circulated around. It comes with a great impact of
data to store vector fields explicitly. On the other hand, much effort has
been done to reveal and to reduce the fields to their important properties.

This work of reducing is well-known. But the opposite direction, gener-
ating the original vector field from the reduced properties, still needs some
attention.

The diploma thesis at hand provides in chapter 2 an insight into the
related work for reconstructing vector fields and establishes in chapter 3

the theoretical backgrounds. The following two chapter, 4 and 5, deal with
the global and local reconstruction of vector fields. To put the results of
both reconstructions into life, chapter 6 presents the implementation of a
prototypical application which handles the reconstruction. The seventh
chapter (7) evaluates the reconstruction with regards to proper vector field
data. Chapter 8 concludes the thesis.

1.1 motivation

Speaking of vector fields, they can allocate an huge amount of data if
they are stored explicitly. There exist different approaches to lossy com-
press vector fields. For example, omitting all explicit vectors and instead
storing only critical points and other topological data. These still contain
the most important information of the field. The opposite direction of
decompressing the whole vector field needs special consideration as this
involve reconstruction of non-existing vector information.

Taking a vector field with a complex topological structure, one can try
to simplify it. Grouping first-order critical points to one higher-order if
they are located in a certain radius is one possibility. The result of this
simplification must be translated back to vector information in the domain.
This needs again a reconstruction to see if the changing of the topology
has fundamentally changed the vector field. Comparing of the vectors can
reveal such unwanted modifications of the field.

Reconstruction of a vector field can also be thought as a part of a con-
struction. This is discussed in the chapter related work. A user can place
certain topological information in the domain which is the first and interac-
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2 introduction

tive step in the construction. This is followed by the reconstruction from
these information. Reconstruction can be seen as a part of the solution to
the construction of vector fields.

This all motivates to the reconstruction of vector fields by their topology.

1.2 goals

The goal of this work is to develop a prototype of an application which can
reconstruct vector fields. This prototype bases on prior theoretical work
presented in this thesis. It is necessary to allow importing and exporting of
well-established data formats like Amira or predefined plain formats.

In addition to support the process of development and evaluation of
the reconstruction, it is convenient to visualise certain aspects of it. The
performance of the reconstruction should be also assessed with the help of
vector field visualisation. This includes for example to contrast the original
with the reconstructed vector field.

1.3 tasks

This thesis works on three main tasks. The first is to fully understand the
context of the work. That means to repeat or to acquire the theoretical
aspects of analytical geometry and of vector fields. Chapter 2 is the result
of these efforts. On the other hand, the first task includes also to fami-
larise with existing approaches in the domain of reconstruction of vector
fields. With this accumulated knowledge the theoretical consideration of a
topology-based reconstruction of vector fields should be done.

The second task is to integrate and implement the theoretical considera-
tion of the reconstruction in a framework which will serve as a software
tool and library. The reconstruction should work autonomously, an interac-
tion with the user is only needed by choosing the input data and deciding
where to store the output. Nevertheless, an interactive part should be made
where the user can explore and compare the results of the reconstruction.
This will combine the framework with graphical user interface frameworks
and possibilities to draw in three dimensions, both need to be chosen from
existing frameworks.

The final task for this thesis is to evaluate the results of the previous
tasks. In order to have not only build an application which can produce
a vector field, it must been shown how good the application fullfils this
task in terms of reconstruction. This needs test data sets which are used
to reconstruct a vector field. Also they must come with the original vector
field which allows a quantitative measurement of reconstruction.



2
R E L AT E D W O R K

There are mainly two approaches in building up vector fields from topo-
logical data. The first is the construction in which the vector field will be
interactively created by the users. The second is the reconstruction which
works in parts autonomously in contrast to the construction. This chapter
gives a short summary about the two approaches and also introduces four
related works.

2.1 2d construction

One of the first works that deals with this concept of constructing two-
dimensional vector fields can be found in [11] and it works with two-
dimensional vector fields only. The construction is split into two parts. As
the topological skeleton is the most significant feature the first step reduces
the construction of a vector field to the construction of its skeleton which
contains the critical points of the field (see 3.2 for details to topological
structures of a vector field). The user will begin with placing control
polygons at a plane in whose centre is located a critical point. These control
polygons must describe the different sections of flow around the point, see
Figure 1a, so the user has to state the flow direction at the vertices of the
polygon. The other part of the topological skeleton are the separatrices
which can be thought as border curves that separate regions of different
flow. They are also modeled by control polygons in a way that exactly one
curve can be interpolated within these as pictured in Figure 1b with the
red lines. Multiple polygons connect to some kind of a chain which start
and end at critical points to form a continuous curve.

After this the interactive part of modeling the topological skeleton is
done and it follows the computation of the vector field. The polygons
of the critical points and the separatrices can be triangulated as well as
the remaining free space. In each of those triangles a linear interpolation
will be performed, resulting in a piecewise linear vector field covering the
domain. Figure 1e shows the final vector field in an Integrate And Draw
visualisation which gives a clue how the stream lines of the field unfolds.
It is also easy to spot the analogy between modeled critical points and the
critical behaviour of the stream lines. Figure 1f on the other hand shows
the curvature plot of the constructed vector field.

The main motivation for building those vector fields is the simplification
and compression of already existing ones. Simplification should produce
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4 related work

a new vector field which has separated important from less important
properties keeping only the first ones. Compression on the other hand
should produce a copy of the original vector field which has both the same
important properties and a much smaller amount of data. One can also
detect the educative effect: an user not only gets passively a vector field
by a measurement but interactively affects the result of the measurement.
The user is the creator of the field. It can give rich insights in the nature of
two-dimensional vector fields if the users explores what happens if he or
she puts two sinks together. This critical point experiment also leads to a
limitation of the approach. It does not assure that it will not create other
critical points. For example the placement of two sinks together will surely
create other critical points in their proximity.

(a) Critical points (red dots)
with flow sectors

(b) Initial stream lines (red) (c) Topological Skeleton

(d) Linear interpolation
within constructed
triangles

(e) Overall vector field ren-
dered with Integrate and
Draw

(f) Curvature plot (scale from
dark green-green-white-
red-dark red)

Figure 1: Steps of constructing a 2D vector field (taken from [11])

2.2 3d construction

A pulling up of the previous technique into the three-dimensional space
can be found in [15] which explicitly refers to the previous work of Theisel.
Weinkauf et al. state it would be the first algorithm for constructing 3D
vector fields based on their topological skeleton.

While the approach of designing 3D vector fields guarantees to contain
the user’s critical points, however, it cannot prevent the occurrence of new
critical points. This may be clear at first sight if we put put two sinks (cf.



2.2 3d construction 5

3.2) in a vector field. There must be other critical structures which make
the flow around the critical points consistent, they cannot exist alone. The
paper explains this with the indices of the critical points whose sum is
typically almost zero. Another reason for the appearance of new critical
points can be found in the approach itself. The tetrahedrisation of the
remaining areas or the choice of the vectors at the bounding box can be
inappropriate albeit the authors state that theses two problems can be
overcome by a more sophisticated strategy.

(a) Parabolic inflow (blue)
and outflow (red) sec-
tors

(b) Elliptic flow sector in
the middle

(c) Hyperbolic flow sector
in the middle

Figure 2: Three types of flow sectors depicted by a sphere icon representing an
high-order critical point (taken from [15])

The construction of a three-dimensional vector field is again implemented
by user-based interaction. Likewise to the previous work the starting point
is to define the high-order critical points and their flow sections. As
mentioned in [3], there exist three types of flow section around two- and
three-dimensional critical points. They are separated by special stream
lines called separatrices. The flow sections characterize a critical point.
Figure 2 depicts the three types of flow sections, see section 3.2.1 for a
detailed explanation of high order critical points and their flow sections.
This iconised depiction is introduced by Weinkauf et al. to visualise a
high-order critical point for the first time. The sphere model supports also
the design of the flow sections as they can be simply drawn on the surface
of the spheres.

After all critical points are modeled they need to be connected. Defining
those connectors is done by linking an outflow section of one critical point
to the inflow section of another critical point. In general, the connection
between critical points does not constitute as straight lines. That is why the
approach allows to define some points with vectors which the connector
should interpolate in location and direction of their vectors. The connectors
are modeled as a piecewise C1 continuous cubic spline. See Figure 3a for
an illustration of a final topological skeleton with six critical points and
eight connectors.

The user can place arbitrary stream lines where there are no or not
enough topological data. They will serve as support for the construction of
the vector field. This concludes the modeling of the vector field.



6 related work

After the interactive modeling of the topological skeleton the vector
field is constructed in an automatic way. At first, to get a piecewise linear
vector field the domain needs to be tetrahedrisated. Each vertex of the
tetrahedron net is assigned a corresponding vector in order to compute a
piecewise trilinear interpolation within them. The tetrahedrisation starts in
the regions around critical points.

(a) Final topological skele-
ton

(b) Tetrahedrisation of the
skeleton

(c) Complete tetrahedrisa-
tion

Figure 3: From topological skeleton to final triangulation (all taken from [15])

The regions around the connectors are subsequently tetrahedrisated. As
the connectors are piecewise cubic curves for each piece of it, a tetrahedron
is made whose vertices match the nodes of the cubic curve. This cannot be
done if the curve is nearly planar: the curve is then split into two quadratic
curves giving the chance to construct two piecewise linear vector fields
for both parabolas. Also if there are tetrahedra from critical points or
connectors which intersect each other, the cubic or quadratic curves are
subdivided resulting in newly subdivided tetrahedra. This subdivision is
done until no tetrahedra intersect each other.

Finally, a bounding box is set to contain the topological skeleton and
to limit the final tetrahedrisation of the domain. The approach uses a
Delaunay tetrahedrisation whose final result can be seen in Figure 3c. To
assign to the vertices of each tetrahedron a vector (if none is present), the
weighted average of the vectors of all adjacent vertices is computed. Having
done this for each tetrahedron a linear vector field can be computed.

2.3 2d reconstruction as approximation

In [5] an algorithm for 2D vector field reconstruction is presented. It uses
as input a set of points and their corresponding vectors of the original
vector field, called sparse samples. The algorithm mainly depends on
an approximation with least squares with two extensions to improve the
result. It tries to find a vector field that approximates each support samples
best. As output a 2D vector field depending on polynomial functions is
generated. These functions are bivariate and have a fixed degree d which
can be controlled by the user.

The first step of the algorithm performs its reconstruction as a local one.
It solves the problem with the help of the classical least square method. This
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approximation can be improved if the derivatives at the given sample points
are known, too. This part is called acceleration fitting. As both approaches
may tend to numerical instability the authors apply also a ridge regression
technique which stabilises the solution in a numerical sense. These three
parts are interlocked by two user-defined parameters which control their
application. Namely if there are no derivatives given, the acceleration
fitting cannot be used. In a similar way the ridge regression technique can
be controlled, even disabled.

The following second step is to lift up the local approximation to a global
one. The local one performs efficiently on small sets of data, it would
be counterproductive to adapt it in a global sense. As the input data is
scattered, the authors first apply an adaptive domain subdivision in order
to tune the level of detail on which the previously described least square
method can operate. This is done by an adaptive quadtree decomposition in
that way that each cell does not contain more points that would be enough
for defining a polynomial function of degree d. Each cell that contains
enough points will be subdivided if the maximum level of subdivision is
not exceeded. This parameter lmax is also user-defined. The reconstruction
works then adequately in each cell. For a global reconstruction these
separated, local ones are combined by a multiresolution partition of unity
(MPU). It blends the local approximations to a global vector field which
guarantees a smooth behaviour. This blending takes only supporting vector
samples being in a certain region around the point which is going to be
reconstructed. The authors enable another user-defined parameter with
the choice of a kernel function for the MPU. They control the influence
of the support regions. The combining of all methods leads to a global
approximation evaluation. To evaluate the vector field at any point of the
region the quadtree is traversed in order to find all support regions that
contain that point from which the vector field approximation is computed.

Lage et al. give some results of their algorithms which show that the ap-
proximation error depends on the polynomial degree and even to a greater
extent on the subdivision level. Changing the latter parameter from 0 to 5

will roughly improve the result by factor 10 but further increasing yields no
more significant changing. They also show how the ridge regression will
prevent the vector field from being too much perturbated when the solution
of the least square method is numerical unstable. Applications are given by
evaluation of Jacobian matrices, computing integral curves in the domain
of the reconstructed vector field and approximating the acceleration field.

2.4 2d and 3d reconstruction with support vectors learn-
ing

In [6] the reconstruction of vector fields is described and solved in means of
machine learning. The authors have chosen support vector machines (SVM)
as they appear to be “the most robust” in statistical learning. Adequately to
the approach in the previous section, sparse and non regular input values
are used in this work as well. The resulting vector field is global and



8 related work

(a) Initial samples for the reconstruction (b) Result of the reconstruction with black
integral curves

Figure 4: Input and output of the two-dimensional reconstruction, icons in the
left picture encode location, direction and magnitude of the vectors, the
colours in the right picture encode length of vectors with blue is the
shortest and red the longest (both taken from [5])

differentiable, and approximates the given input samples as the authors
state.

The learning of the vector field, i. e. the reconstruction, is done for two
and three dimensions in learning either the Cartesian or the polar and
spherical respectively representation. For example in the 2-d Cartesian
case vectors are represented by a (x,y) tuple which defines their positions
according to both coordinate axis. On the other hand, in the 2D polar case
vectors are represented by a (r, θ) tuple where r represents the length of the
vector and θ the deviation to a coordinate axis. The actual reconstruction is
strongly abstracted from terms of vector fields as it handles only streams
of numbers.

The learning is done by means of a ε-SVR which stands for support vector
regression and is a learning machine for “solving multidimensional scalar
value prediction and estimation problems”. SVR uses a training set of the
input vectors to build up a affine predication function which is subject to
an optimisation. This results in a predication function that approximates
values to the searched function best. The reconstruction of a vector field
implies a transformation of the vector field into two (in three dimensions
into three) predication functions, each for one dimension. They are created
with a part of the input samples. These functions are optimised with the
rest of the input giving an approximation for the vector field that fits to the
input data.

Due to its underlying system this reconstruction offers three parameters
that can be controlled by the user. The first parameter that gave the
solving method its name is ε and adjusts smoothness and quality of the
approximation as two oppositional options. The second parameter is the
penalizing constant P which aims for larger values to fit the training data
more what is precarious for the prediction at other locations. The used
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kernel function is the last parameter. It controls inherently the support
vector regression.

Marcos Lage et al. state that their approach gives statistically stable
results which are reliable in both dimensionalities. Due to the used machine
learning method the obtained vector field is unique and globally optimal.

2.5 conclusion

To sum up the four approaches of this chapter table 1 shows a comparison
of important aspects for each approach. The header line of the table refers
to each section of this second chapter. The first feature is dimensionality.
The second approach explicitly refers to the first in the way that it is
the extension to the third dimension. The third approach is only two
dimensional but the authors state they plan to extend it to three dimensions.
From the four presented approaches only the last reconstruction algorithm
is applicable to two and three dimensions. Due to the triangulation and
tetrahedrisation in the two first approaches they work in a local sense, i. e.
the constructed vector field within one triangle or tetrahedron respectively,
has nothing to do with the one in any other. The two latter approaches
produce vector fields where the changing of the input in one region of
the domain can affect any other region, thus the reconstructions work at a
global scope.

The two first approaches were developed to model a vector field by
constructing its topology. This first step is followed by a non-interactive
construction of the vector field. One can imagine that providing a measured
topology can be used to reconstruct a vector field. On the other hand the
latter two algorithms are solely intended for executing the reconstruction.
If one could model the input of the algorithms they could also be used
for a construction. The user must only be able to define samples, i. e. the
vectors at certain locations of the vector field.

Finally, again the four presented works fall apart in two categories. The
two former aim to interpolate the given topology data, that is to have the
critical points and stream lines at the location that the user have modeled.
The two approaches by Marcos Lage et al. are per definition only an
approximation. In general the input data cannot be found in the resulting
vector field but it is at best approximated.

approach 2.1 2.2 2.3 2.4

Dimensionality 2-d 3-d 2-d 2-d & 3-d

Scope Local Local Global Global

Reconstruction? Construction Construction Reconstr. Reconstr.

Topology aware Yes Yes No No

Exact? Interpolation Interpolation Approx. Approx.

Table 1: The table sums up the features of the four presented approaches
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Of course, these four approaches are not the only ones. The first two
were chosen because they are strongly related to this diploma thesis as they
deal with a topological construction. After a skeleton is made up the two
approaches build autonomously a vector field. The two latter approaches
are interesting to contrast the two former as they merge calculus with
machine learning, especially approach 4. This proves how fertile it can
be to mix different fields of computer science to get a new look at an old
problem.

There are other possibilities in constructing and reconstructing vector
fields which are not covered within this thesis. The features which the
resulting approach of this thesis should cover are: reconstruct by interpola-
tion a three-dimensional vector field by its topology in a global and local
sense. Before deepening this, general explanations to the theory of vector
fields need to be set out.



3
T H E O RY

The diploma thesis deals mainly with vector fields and interpolation. The
following chapter will give an overview of the concepts which are needed
for the rest of this course.

3.1 basic notations

In this thesis scalars and functions are written as small italic letters (s, f)
whereas points and vectors are typeset in small bold letters (v). Vector
fields also used this notation. To denote matrices capital bold letters are
used (M).

3.2 vector fields and their topological structures

A (parameter-independent) vector field v is a function that maps a vector
x ∈ Rm to a point p ∈ D ⊂ Rn in space: v : D ⊂ Rn ⇒ Rm. Throughout
this work holds m = n = 3 and only parameter-independent vector fields
are considered so that we speak of three dimensional, parameter independent
vector fields. The vector field can be written as in Equation 3.1 where u, v
and w are certain trivariate functions and x,y, z ∈ R.

v(x) = v(x,y, z) =

 u(x,y, z)

v(x,y, z)

w(x,y, z)

 (3.1)

For example, Figure 5 shows the equation for an analytic vector field.
The two images give an illustration on how the vectors of this field behave,
they do a helical movement along an axis. Analytic means here that for
every point in the domain a vector can be computed. This is not true
for measured vector fields as in fluid mechanics. For these fields exists
only a finite amount of samples either structured like on a regular grid
or unstructured. The samples serve as input for interpolating vectors at
unknown points.

If we look at the vectors at each point as an information of flow, i. e. the
vector gives direction and value of a movement at this point, we can build
lines of movement for massless particles in the flow which is described
by the vector field v. These lines are called stream lines or tangent lines

11



12 theory

(a) Equation (b) Vector samples (c) Streamlines

Figure 5: Equation, vector samples and stream lines of an analytic vector field
(images made with [2])

as the vectors at these points where the lines go through are also their
tangent vectors. Those lines or better curves are solutions of an autonomous
ordinary differential equation system, cf. [14]. One important property of
stream lines is that given two of them, they do not intersect in one point,
except this one is a critical point of v. That also means, given a non-critical
point in a vector field v exact one stream line passes there. In general, one
cannot find a parametric description of a stream line.

Stream lines are a very useful visualisation tool because of that non-
intersecting property. The two right images in Figure 5 compare the
depiction of only vectors versus only stream lines. The stream lines give a
much better impression of the vector field behaviour than only the vector
samples. With the colour coding for the stream lines it is also possible to
infer the direction of the flow. The vector samples do this by all the small
arrows.

Figure 6: Showing some of the vectors of a field (left) and in contrast only the crit-
ical points and boundary switch curves (right) as topological properties.
Both images show also the boundary of the domain as wire frame cube
in white (Images made with JFlowVisFW)

What are topological structures? Now as there is a definition for vector
fields one could try to visualise them. The naive and brute force method
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is to draw an arrow at every point of the field in order to visualise the
vector information there. This can be an unsatisfying solution as there
is too much data to visualise it properly and, of course, efficiently. The
viewer cannot interpret the result. To overcome this dilemma one tries
to abstract the data, i. e. to build up a topological skeleton which only
represents “interesting” parts of the vector field and reduces the visual
redundancy. These parts include: Critical Points, Boundary Switch Curves,
Saddle Connectors, Separatrices starting from the first two ones, Boundary
Switch Connectors, Isolated Closed Stream Lines. This thesis deals only with
the first three due to its constrictive length. For details to boundary switch
connectors see [16].

3.2.1 Critical Points

Every point p of a vector field where its vector vanishes, i. e. where v(p) = 0,
is called a critical point. As there also could be critical curves or critical
surfaces where the vector field vanishes, it is also demanded that for a
critical point the neighborhood of that point is not null: v(p± ε) 6= 0 for
some ε-vector with positive length. If we take the (parameter-independent)
vector field as a flow field those points are stationary islands in that flow.
A particle at those points will not be moved by the flow. Every critical
point can be assigned a matrix called Jacobian. It contains the first-order
derivatives, see Equation 3.2 for the formal notation of the Jacobian of a
three dimensional vector field. The variable c denotes the critical point
and the variables u, v and w denote the three trivariate functions which
make up the vector field. As this is an analytical definition for simulated
or measured vector fields there exist assessments for the Jacobian.

J(c) =

 ux uy uz

vx vy vz

wx wy wz

 =


d

dxu(c) d
dyu(c) d

dzu(c)
d

dxv(c) d
dyv(c) d

dzv(c)
d

dxw(c) d
dyw(c) d

dzw(c)

 (3.2)

There are first-order critical points x for which the determinant of the
corresponding Jacobian matrix J(x) does not vanish: det(J(x)) 6= 0. Those
critical points can be classified by an analysis of the eigenvalues of the
Jacobian. Taking the real part of the eigenvalues, there are four different
characterizations possible, see Table 2. In general the are more positive
eigenvalues the more inflow does exist. These four cases can be subdivided
into eight when taking the imaginary part of the eigenvalues into account,
see Table 3. If some eigenvalues have also an imaginary part the in- or
outflow becomes a swirling movement. In two dimensions there exists also
the type centre for a critical point which will not be part of the considerations
here. This is a point which is surrounded by closed stream lines making it
literally an island in the flow.

Besides the relative simple first-order critical points, there exist higher-
order critical points which are characterized by an arbitrary amount of
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kind of critical point condition for eigenvalues

Sink 0 < <(λ1) 6 <(λ2) 6 <(λ3)

Attracting Saddle <(λ1) < 0 < <(λ2) 6 <(λ3)

Repelling Saddle <(λ1) 6 <(λ2) < 0 < <(λ3)

Source <(λ1) 6 <(λ2) 6 <(λ3) < 0

Table 2: A categorization for first-order critical points according to the real part of
the eigenvalues of their Jacobian matrix (from [14]).

kind of critical point condition for eigenvalues

Node =(λ1) = =(λ2) = =(λ3) = 0

Foci =(λ1) = 0 and =(λ2) = −=(λ3) 6= 0

Table 3: A categorization for first-order critical points according to the imaginary
part of the eigenvalues of their Jacobian matrix. The eigenvalues are in no
particular order (from [14]).

sectors of flow around them. See Figure 7 for an example. There can be
three different flows: hyperbolic, elliptical and parabolic. This complexity
cannot be handled by the eigenanalysis of the corresponding Jacobian
matrix as its determinant is 0 (or not defined?). The characterization
likewise to the one of the first-order critical points is also not possible.
Instead one uses an explicit enumeration and localization of the different
flow sectors.

Figure 7: Three different flow sections around a critical point: in two dimensions
(left) and in three dimensions (right): p parabolic, e elliptic, h hyperbolic
(left inspired by [11], right inspired by [15]

Because of the different flow sectors [15] proposed an icon-based visu-
alisation for high-order critical points in three dimensions. Section 2.2
gives an overview. Each first-order critical point can be considered as a
higher-order critical point. In that sense sinks and sources have only one
parabolic flow sector. Saddles contain two hyperbolic flow sections in three
dimensions.
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Figure 8: A comparison of first-order critical points in a three-dimensional vector
field, ei denotes a eigenvector (inspired by [14])

Figure 8 juxtapose the eight types of first-order critical points which arise
if the four and two conditions for kinds of critical points in tables 2 and 3 are
combined. In the figure, a) and e) denote a source (fully repelling), b) and f)
a sink (fully attracting), c) and g) a repelling, and d) and h) an attracting
saddle. The four on the left are known as nodes as their eigenvalues have
only real parts. In contrast the four critical points on the right are referred
to as foci. Here two eigenvalues have also imaginary parts, as shown in
table 3. In general, the depicted arrows represent the eigenvectors of the
Jacobian of the critical points. If the vector points to the critical point, its
eigenvalue is greater than zero. If the vector points away from the critical
point, its eigenvalue is less than zero. Therefore, the three eigenvectors
e1, . . . , e3 in a) make the critical point a source, as they all point away from
it. The two eigenvectors e2, e3 in c) and d) make up a separation surface.
In e) to h) the two eigenvectors with eigenvalues that have imaginary parts
are not depicted. Instead a spiral is shown which directly corresponds to
the imaginary parts of the eigenvalues. The plane which both vectors are
span is tangentially to the spiral in the critical point.

3.2.2 Boundary Switch Curves

Another important topological feature of vector fields are Boundary Switch
Curves (BSC). If the domain of a 3D vector field is considered as a cuboid,
there are six boundary planes. Let there be also no critical point lying on
these boundary planes, every point on these can be declared to be part
either of inflow, outflow or part of a boundary switch curve. This means
that the vectors at these points are showing into the domain or pointing
outside of it. Or, in case of the BSC, the vectors are tangent to the boundary
plane. The BSC separate the inflow and the outflow at the boundaries like
the flow switches from in to out by crossing the curve. An example is
shown in Figure 9. The white BSC shown in the right image of Figure 6 are
computed from vector field.
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Figure 9: A boundary switch curve (black solid), every vector (e. g. b) on this
curve lies in the boundary plane (red/blue), red vectors (i1, . . . , i3) point
inside, blue ones (o1, o2) outside of the domain (inspired by [14])

3.2.3 Separatrices and Saddle Connectors

This part explains separatrices and the recent concept of Saddle Connectors
([10]) which can simplify and support the visualisation of separatrices.
Separatrices divide a vector field in regions of different flow. In two dimen-
sions they are curves and in three dimension they appear as curves and
surfaces. Critical points are the starting point from which separatrices can
emerge. A vector field in two dimensions containing one or more saddles
will have separation lines. They start or end in saddles in direction of the
eigenvalues in forward and backward integration ([14]). The separation
lines can also start or end at boundary switch points which are similar to
BSC in three dimensions. If a separation curve is closed it forms a special
type.

In three dimensions a vector field with saddles has separation surfaces
and curves. Especially the former are difficult to visualise as they can
occlude other features and themselves. An attracting saddle in three
dimensions maintains three separatrices: two curves for repelling and one
surface for attracting. The separatrix curves can end in other critical points
or stop at the boundary of the domain. The Figure 10a shows a saddle and
its separation surface (blue) and the two separation lines (reddish).

[10] presents a more intuitional way of visualise separatrix surfaces called
saddle connectors. They are computed from the intersection of two separatrix
surfaces if this forms a curve. Note that this intersection can degenerate to a
new surface which will then not be considered as a saddle connector. They
always form as a stream line of the vector field and connect an attracting
and a repelling saddle. As a result a saddle connectors gives a good clue
how the flow appears and where separatrices intersect. The common
approach is to hide all separatrices and to show only the possible saddle
connectors. The user can then activate the separatrices in which he or she
is interested avoiding visual clutter by showing too much information at
once.

Figure 10b shows a saddle connector between an attracting (top) and a
repelling saddle. The black arrow also reveals the orientation of the stream
line.
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(a) Saddle (orange dot) with separation sur-
face (blue) and curves (reddish, depicted
as vector) (from [14]), three streamlines
are shown

(b) Saddle Connector (black): intersection
of separation surfaces of two saddles
(taken from [14])

Figure 10: Separatrices and saddle connector

3.3 classification of the reconstruction

The following section will classify different approaches of a reconstruction.
It contains the benefits and drawbacks which are used to choose the best
methods.

3.3.1 Global vs. Local

Speaking of global and local means how the vector field topology was
generated and how it should be interpreted.

In the local case one has given a grid which sub-divides the domain
consisting of a vast amount of grid cells. They exist independently from
each other, i. e. the vectors in one cell has no influence to the flow in
another cell no matter how far or near it is. Reconstructing the vectors
with a linear method, all this can also imply that the field contains abrupt
changes when crossing the boundaries between two cells. Only the vectors
on the boundary of two adjacent cells share information of these two.

On the other hand global means that the critical structures and the flow
are bound together so that they influence each other over long distances.
This is mostly given in analytical fields (c. f. Figure 5).

3.3.2 Interpolation vs. Approximation

As mentioned in section 3.4, interpolation is used to reconstruct values
at data points with the help of known values at surrounding data points.
This includes also that the result will contain the given values and not
generate other. In the context of vector field reconstruction this means an
interpolation will not generate new critical structure and will also retain
existing ones. This advantage comes with the drawback of being computa-
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tionally intensive. For example, if one tries to solve the interpolation with
polynomials, the amount of critical points will be directly the degree of the
polynomials that needs to be solved.

In contrast to the interpolation an approximation does not try to find
the exact solution. This is most commonly seen while solving a system
of linear equations where there are more equations than unknowns, i.e.
the system is overdetermined. With the help of the method of the least
squares an approximative solution can be found that fits best for every
equation. In general, such a overdetermined system has no solution. For a
reconstruction using only approximation this bears the problem that the
result will not resemble to the original data. For the reconstruction of a
vector field that means new critical structures can appear and old ones
vanish.

3.3.3 Conclusion

For the course of this thesis the choice is to reconstruct a vector field by
methods of interpolation. Depending on topological features the recon-
struction must map them to the result, so all input critical points should
occur in the result at the same position and no other critical points should
emerge. As pointed out before, approximation must not be used.

The other aspect of the reconstruction is its scope. Chapter 2 gives an
overview for different approaches both local and global. For the topological
based reconstruction in this thesis local and global approaches should be
developed allowing to choose adaptively based on the input.

3.4 interpolation

Interpolation in general is a method to find values at arbitrary data points
by looking at the surrounding data points and their known values. As
demonstrated in section 3.3 interpolation should be the preferred method
for the vector reconstruction. The following subsections describe the inter-
polation methods used in this thesis.

3.4.1 Inverse distance weighted interpolation

The inverse distance weighted interpolation is a simple and most commonly
used technique for interpolating scattered data. The main idea is that the
values which are supposed to be interpolated should be less influenced
by known values if these are farer away, i. e. their influence is inverse to
the distance of each other. The interpolated values are an average of the
scattered values weighted with the inverse of their distance, see Equation
(3.3) for a principal formula. Every unknown value at a certain location can
be interpolated with the N known, scattered values f(xi) and their locations
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xi ([9]). These values are weighted with the inverse of their distance to the
unknown value.

f(x) =

N∑
i=1

f(xi)√
x2i + x

2
(3.3)

There exist some extensions, like a power of the distance. Only the
simple previous equation will be used in this work.

As this method uses all values, it is called global. Taking only a certain
subset of values, preferably those which are closest, makes it a local method.
This would be useful if there is a huge amount of scattered data and the
computation will take rather much time. This imposes the problem to
choose the right subset of values. Moreover, using all values makes the
resulting function continuous.

3.4.2 Trilinear Interpolation

In the one dimensional case trying to compute values f(x) for x0 < x < x1
where f(x0) and f(x1) are given, one of the fastest way is to use a linear
interpolation. The corresponding formulation is given by the formula:

f(x) = f(x0) +
f(x1) − f(x0)

x1 − x0
· (x− x0). (3.4)

As seen in Figure 11a the values between f(x0) and f(x1) form a straight
line when computed by linear interpolation, in fact this computation is
strongly related to linear functions. This interpolation can be extended
to higher dimensions. Figure 11b shows a three times repeated linear
interpolation resulting in a trilinear interpolation in a cuboid.

A simple formulation for a trilinear interpolation is given in Equation
(3.5). It is an extension of a linear interpolation to three dimensions meaning
that one can interpolate values in volumetric data sets. To use this formula
the eight values a7, . . . ,a0 must reside at the eight corners of a cuboid.

vxyz = a7xyz+ a6xy+ a5xz+ a4yz+ a3x+ a2y+ a1z+ a0 (3.5)

Consider now a unit cube, i. e. a regular cuboid with side length 1 and
let the corners be denoted by p000, p100, p010, . . . , p111 which means that
the first point is located at (0, 0, 0) and so on. If there are values given
at each of those eight corners, e. g. a vector, one can interpolate at any
location inside (and outside if desired) the cube a vector with the following
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x

f(x)

x0 xq x1

f(x0)
f(xq)

f(x1)

(a) Linear interpolation, computing
f(x) at xq by knowing x0 and x1
and their function values

(b) Trilinear interpolation in a cuboid, value P is
a linear interpolation of P0 and P1 which are
in turn a linear interpolation of Pij, which
are finally a linear interpolation of Pijk val-
ues at the eight vertices of the cuboid

Figure 11: Linear and trilinear interpolation in a geometric sense.

Equation (3.6) where v000, . . . , v111 denote the values at the corresponding
corners.

vxyz = v000 · (1− x) · (1− y) · (1− z)
+ v100 · x · (1− y) · (1− z)
+ v010 · (1− x) · y · (1− z)
+ v001 · (1− x) · (1− y) · z
+ v110 · x · y · (1− z)
+ v101 · x · (1− y) · z
+ v011 · (1− x) · y · z
+ v111 · x · y · z

(3.6)

If that cube is neither of unit size nor located at the origin, one can
translate and scale it to conform that condition. The computation above
is applied and the transformation can be inverted to get the result. The
formulation in (3.6) can be changed to the following:

vxyz = (−v000 + v001 + v010 + v100 − v011 − v101 − v110 + v111)xyz

+ (v000 − v010 − v100)xy+ (−v000 + v001)z

+ (v000 − v001 − v100)xz+ (−v000 + v010)y

+ (v000 − v010 − v001)yz+ (−v000 + v100)x

+ v000

(3.7)

One important property of a trilinear interpolation is that it can generate
only up to six zeros ([13]). Equation (3.8) shows another form of Equation
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(3.5). One can see by a simple expand that the formulas are equivalent.
Now consider that all zeros are searched. It is obvious that each one of
the three trivariate functions u, v,w can take −ai for x, −bi for y and −ci
for z. Combining these so that each equation is zero, there are at most six
combinations, namely: (−a1,−b2,−c3), (−a1,−b3,−c2), (−a2,−b1,−c3),
(−a2,−b3,−c1), (−a3,−b1,−c2), and (−a3,−b2,−c1) which are the six
possible zeros. Expressing this in combinatoric terms, one tries to permute
elements without repetition, yielding the formula n! which gives for the
three elements the value 6.

V(x,y, z) =

 u(x,y, z)

v(x,y, z)

w(x,y, z)

 =

 (a1 + x)(b1 + y)(c1 + z)

(a2 + x)(b2 + y)(c2 + z)

(a3 + x)(b3 + y)(c3 + z)

 (3.8)

3.4.3 Reverse Trilinear Interpolation

This section deals with the inversion of the previous described trilinear
interpolation. That means, vectors are searched at the unit cells’ corners
from given input vectors which may or may not be inside the unit cell. This
unit cell is located at the coordination origin. Therefore eight vectors must
be given to uniquely reconstruct the vectors at the corners.

v1 = v000(1− x1)(1− y1)(1− z1) + v100x1(1− y1)(1− z1)+

v010(1− x1)y1(1− z1) + v001(1− x1)(1− y1)z1+

v110x1y1(1− z1) + v101x1(1− y1)z1+

v011(1− x1)y1z1 + v111x1y1z1

... =
...

v8 = v000(1− x8)(1− y8)(1− z8) + . . .+ v111x8y8z8

(3.9)

This gives the system of linear equations shown in (3.9) which can be
uniquely solved if the locations of the eight known vectors are not coplanar.
v1, . . . , v8 are just the given vectors and v000, . . . , v111 are the vectors at the
eight corners of the unit cube. The values xi,yi, zi form the coordinates of
vector vi. The vectors are forming a linear combination.

Every non-unit cuboid can be scaled and translated to be a unit cell at
the coordination origin. After the reverse interpolation the cell and the
result can be translated and scaled back to the original location and size.

3.4.4 Reverse Interpolation from Critical Points

Considering again an unit cell and an amount of given (first-order) critical
points strictly inside it, the following will show when and how one can re-
construct the vectors at the eight corners, assuming a trilinear interpolation.
The values v000, . . . , v111 indicate the vectors at the eight corners of the cell:
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v000 is located at (0, 0, 0) and so on. For every critical point the location
and its Jacobian are given, resulting in twelve information which can be
used as in Equation (3.10) to form a system of linear equations. Note that
the equations form for vectors, e. g. the left side of the first equation is the
zero vector. Furthermore, the Jx, . . . , Jz are the three rows of the Jacobian.

The first equation just mentions that the eight vectors must interpolate a
critical point at the given position (x,y, z). That equation can be differenti-
ated in three dimensions, resulting in the three latter equations. The left
sides are the entries of the Jacobian, the right sides are the derivatives.

0 = v000(1− x)(1− y)(1− z) +. . .+ v011xy(1− z) + v111xyz

Jx = −v000(1− y)(1− z) + . . .− v011yz + v111yz

Jy = −v000(1− x)(1− z) + . . .+ v011(1− x)z+ v111xz

Jz = −v000(1− x)(1− y) + . . .+ v011(1− x)y+ v111xy

(3.10)

One critical point with its Jacobian results in four equations as seen
before. On the other hand, the eight vectors are made up by 24 (= 3× 8,
dimension times amount) unknown information. To get a system of linear
equations which is neither underdeterminated nor overdeterminated, eight
equations are needed. Exactly two critical points with their Jacobian will
form a unique solution for this problem.

Again, if the cell is not the unit cell, it can be translated and scaled to be
so.
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G L O B A L R E C O N S T R U C T I O N O F V E C T O R F I E L D S

This chapter describes the approaches to reconstruct vector fields in a global
sense which I have developed in this thesis.

4.1 one sink and one source

To give a short introduction, this section shows how a reconstruction
of a quite simple vector field in two and three dimensions can be done.
This vector field consists only of one source and one sink. Such a vector
field models for example the magnetic field of a bar magnet or two point
charges of opposite polarity, as visualized in Figure 12a. Both point charges
are visualised by two dots of different colour. The magnetic field lines
are visualised by curves which start and end in the dots. They can be
represented by stream lines. One important difference between point
charges and the model is that they have an actual size and are not only
points.

(a) Magnetic field lines created by two point
charges of opposite polarity (taken from
[7])

(b) Abstracting the point charges and their
field lines

Figure 12: Illustrating the idea for reconstructing a vector field with one source
and one sink

One can mathematically model this two dimensional magnetic field by a
two dimensional vector field with the following approach. Using circles
which go through both critical points, i. e. both poles, and any other point
in the domain, that circle is uniquely defined. Moreover the centre of
each circle has the same distance to both critical points. By convention the
negative pole is the sink and the positive pole the source. Each vector of
the field is parallel to the tangential vector of the circle that goes through

23
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this point and both critical points. The direction of the vector is determined
by the direction following the circle to the south pole. See Figure 12b for a
visual explanation. It shows several constructed circles with their centre
points m1, . . . ,m10. The red marked point s is the source and the green
one the sink. Also for the circle with the centre point m10 six reconstructed
vectors are shown.

The last missing piece is the length of the vectors which is computed in
terms of the distance to both critical points. Moving along a stream line the
length should increase until the distance to both critical points is equal and
then decrease. One should define a maximum length lmax which can bound
the computation in equation (4.1). The operator dist gives the Euclidean
norm for its two arguments. For every point p in the length of its vector in
the field can be computed.

l(p) = arctan
(

min
(

dist(s;p); dist(q;p)
))
· 2
π
· lmax (4.1)

Essentially all circles represent two stream lines. The construction guar-
antees that these stream lines will not intersect except in the critical points.
The approach can also be used in three dimensional space. Again a vector
is constructed with the help of a circle which goes through both critical
points and the point where the vector should be computed. The vector lies
in the plane at this location which is spanned by all three points. This leaves
two possibilities for its direction. It must be that direction which points
away from the source and points towards to the sink. The computation of
the vector length is similar to equation (4.1).

This reconstruction is made in a global sense. At every point in the
domain the two critical points are taken into account.

4.2 reconstruction with critical points

To extend the previous considerations for arbitrary many first-order critical
points, I developed the following two approaches, in this and the next
section.

Given are all n first-order critical points of the vector field with their
respective Jacobians. These matrices carry information about the derivatives
of the field at the locations of the critical points, namely the first-order
partial derivatives (c. f. section 3.2.1). It is possible to sample, or better
approximate vectors with the Jacobian, as equation (4.2) demonstrates. This
pictures just a matrix multiplication.

−−→
C,P is the vector between the critical

point C and the location P. This should be taken with caution. The farther
the sample location, the worse the result of the vector compared to the one
in the original vector field. On the other hand, the smaller the ε gets, the
shorter also the sampled vector get as they get nearer to the critical point
where the vector field is null. This evaluation is similar to the one of the
linear parts of the Taylor Series. One should use a fairly small distance to
the critical point to get at least a good approximation for the directions of
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the vectors surrounding the critical points. This first step provides a bridge
between critical points and vectors, used although it is a approximation.

vsample = Jv · (
−−→
C,P) (4.2)

For the use of this equation one needs sample locations around the critical
point. For symmetry considerations it is the best when these location have
the same distance to the critical point and also are nearly equally distributed
around it. This leads to considerations how to equally distribute k points
on a sphere to which appendix A.1 gives some clues. Figure 13 shows
a result of the distribution as it is used in this approach. The black dots
represent k = 1280 nearly equally distributed locations on that sphere. The
colored tori are the sections of the surface with the three planes x = 0,
y = 0 and z = 0, respectively, considered the sphere’s centre is located at
the coordination origin.

An extension is to take more than one sphere surface. Generating m lay-
ers, needs m different ε values. They can be generated equally in decreasing
order: ε · i/m for i = m. . . 1. This improves the sample density around
the critical point while still having the previous mentioned symmetry
consideration.

Having all these k locations around the critical point, one can compute
a vector between a location and the critical point. This serves as input for
equation (4.2) giving a sampled vector around a critical point. All sampled
vectors are assumed to represent in parts the flow around the critical point
as they are sampled from the Jacobians.

Figure 13: Two views of the same sphere with approximately equally distributed
points on its surface, generated by the approach used in this work and
rendered in the ray tracing program POV-Ray.

At this point there exist n · k so-called support vectors where k is the
number of samples around each critical point. With those support vectors I
now use a inverse distance weighted interpolation (c. f. 3.4.1) to compute
other vectors that should make up the reconstructed vector field. This is
done in global sense in that way that every vector has an influence on the
result. The interpolation interweaves the local information generated near
the critical points to one unit, making it possible to generate vectors at
every position in the domain. Figure 14 illustrates again the two steps.
Critical points as input are used to sample vectors in their surrounding.
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The following step uses these as support vectors for a global interpolation
generating vectors at arbitrary locations.

Figure 14: From four critical points to support vectors to a reconstructed vector
field: the approach of the section 4.2

This first approach sketch can take the following parameters: the amount
of points which are sampled around a critical point, the distance between
the samples and the critical points.

While sampling very near to the critical points, one generates fairly short
supporting vectors which also makes very short result vectors. Despite
that, the supporting vectors are not normalised.

It is inherent to this approach that it at best only reconstruct the orienta-
tion of the vectors but not their length. Another remark needs the fidelity:
one should not expect to get good results at locations where topological
information (i. e. a critical point) is far away. Therefore, one can take the
boundary switch curves as another topological structure into account.

4.3 reconstruction with boundary switch curves

The previous method lacked topological information to reach a better
fidelity in reconstruction. The farther a reconstructed vector is away from
topological data the poorer is it compared to the original. To reach a better
result, I have added the Boundary Switch Curves (BSC, c. f. 3.2.2) as further
topological feature to the method. This gives the information where vectors
at the boundary are located that neither point in nor outside corresponding
to the boundary.

After generating the support vectors from the critical points as described
in the previous section, this extended method will try to reconstruct the
vectors at the BSC as a next step. The reconstructed vectors of the BSC
must lay in their corresponding boundary plane. In this example, each
BSC is given as a polyline. At every control point of the polyline a vector
is reconstructed. In general those vectors will not have the property being
tangent to the boundary plane, so an iterative fitting is used: The recon-
structed vectors at the BSC are transformed into the boundary to fulfil this
feature and then in turn being used as support vectors together with the
original vectors sampled around the critical points for the next iteration.
This is done until the angle of the reconstructed vectors at the BSC and



4.4 parameters 27

the ideally BSC vectors is sufficiently small, i.e. until the vectors lay nearly
perfect within the boundary. The iteration will not change the vectors that
are sampled from the critical points. Again the inverse weighted distance
interpolation is used. For the locations at the BSC a converging is used
which will not return the constructed vector from the previous step but
consume all support vectors of the current step to generate a new vector.
However, if there is already a vector at this location it should have the
biggest influence to the interpolation. Neglecting this convergence will
prevent the vectors at the BSC from moving into the boundary plane.

Figure 15: Moving vectors on a BSC into the boundary

The first obvious method to handle the vectors at the BSC is to rotate
them into the plane. The rotation axis is the “tangent” of the BSC at that
point and the rotation is done in that direction which takes the smaller
rotation angle. If the BSC are taken as a polyline, it is not differentiable at
their control points. The tangent at a control point of the polyline should be
defined as the line that is coplanar to both line segments of the polyline at
this point, goes through this point and has the same angle to both segments.
This can be computed by central difference. See Figure 15 for an example,
showing a BSC and two vectors which are rotated into the boundary plane.

Note that it is possible to generate vectors at the boundary switch curves
that lay in the boundary plane but between two vectors can be a huge
difference in their angles compared to their other neighbors. This is because
they are rotated into the plane by the smallest angle. Giving that one vector
is rotated by, for example 89

◦into the plane, its neighbor would be rotated
by 91

◦in the same direction into the plane. But actually it is also rotated by
89
◦in the opposite direction just because the threshold is 90

◦.
Figure 16 outlines the three steps for the reconstruction mentioned in

this section. Note the additional Boundary step in contrast to the previous
section and Figure 14. The generated vectors at the BSC will serve as
additional support vectors for the final step. Vectors from critical points
and boundary switch curves are not distinguished. It could be further
examined if this would necessary to rely more on the vectors of the critical
points, i. e. weight these vectors more.

4.4 parameters

This sections outlines important parameters of the global reconstruction.
The amount of samples which are generated for every critical point is the
first one. Assuming it to large can slow down the whole reconstruction. A
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Figure 16: From four critical points to support vectors to a reconstructed vector
field: the approach of the section 4.3

good intermediate value for not more than 50 critical points is 100. If there
are more critical points, this value should be decreased.

The second parameter is the distance between the samples and the critical
point, called epsilon. It correlates directly to the length of the reconstructed
vectors. Making it too small can cause numerical problems. A value of 0.001

seemed to work well. Also, it should be considered that the value must not
be larger than the half of the minimum distance between all critical points.
Breaking this rule would generate samples for one critical point which are
nearer to another critical point. This makes the vectors dependent from a
Jacobian which is farther away than another. It would be a good guess to
have this value at most at a fourth of this minimum distance.

4.5 conclusion

This chapter showed two possibilities of reconstructing a vector field when
given only its first-order critical points and its boundary switch curves.
The reconstruction generated a global vector field. A local reconstruction is
discussed in the next chapter 5. The results of this chapter are evaluated in
chapter 7.



5
L O C A L R E C O N S T R U C T I O N O F V E C T O R F I E L D S

The previous chapter dealt with the reconstruction of vector fields in a
global sense. In addition, the following chapter is dedicated to a local
approach. This means that the space is divided into small subcells in which
the reconstruction is done. The reconstruction in one cell is independent
from the reconstruction in any other non-adjacent cell.

5.1 preconditions and input

The reconstruction in a local sense gets as input data the critical points
with their corresponding Jacobian matrices and the Cartesian or regular
grid at whose vertices the vectors should be reconstructed. This is similar
to the global reconstruction. As this approach works local the underlying
grid needs to be known in beforehand. This is mainly done by specifying
the width, height and length of one cell and the location of a corner of
one cell. These six numbers define a Cartesian grid if each cell is a unit
cube and the grid points are at integer locations, otherwise it is a regular
grid. Considerations are not made for rectilinear and other grids. Also,
the interpolation within each cell is assumed to be trilinear and depends
therefore on the vectors at the eight vertices.

It is demanded that a critical point does not coincide with a vertex of
any cell or lies on an edge of any cell.

5.2 one sink and one source in one cell

Reconstruction in one cell means that the vectors at the eight corners of the
cell need to be found from the only input data, the critical points. Therefore
one needs to know when the reconstruction in one cell has an unique
solution. Clearly, if there is no critical point, the reconstruction cannot find
any vector out of thin air.

As an introduction like in section 4.1, this section describes a simple
example of reconstructing the eight vectors of a cell which contains one
source and one sink as critical points. The interpolation within this cell
is considered to be trilinear. The two Jacobians of both points are given.
Figure 17 shows an example of such a cell.

To find the eight vectors at the cell’s vertices, one can make up a system of
linear equation where each critical point with its Jacobian matrix contributes

29
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Figure 17: A cell with one source and one sink (orange dots, with prototypical
vectors).

with four equations, see Equation (5.1) and section 3.4.4, where x,y, z
denote the position of the critical point and Jx, Jy, Jz are the row vectors
of the Jacobian matrix J. The function f(n,m) returns the value m if
n = 1, otherwise (1−m) is returned. Likewise for f′, if n = 1 the value
1 is returned, otherwise −1. This function f is introduced for brevity.
See equation (A.1) for a matrix orientated form of this system of linear
equations.

0 =
∑

ijk∈{0,1}

vijk · f(i, x) · f(j,y) · f(k, z)

Jx =
∑

ijk∈{0,1}

vijk · f′(i, x) · f(j,y) · f(k, z)

Jy =
∑

ijk∈{0,1}

vijk · f(i, x) · f′(j,y) · f(k, z)

Jz =
∑

ijk∈{0,1}

vijk · f(i, x) · f(j,y) · f′(k, z)

(5.1)

The first equation denotes the property of the critical point: it is the
location of a vector with length zero of the vector field. And as it is a
trilinear interpolation, the vector at the critical point is trilinear combined
by the vectors at the eight corners. The last three equations are made up by
the three directional derivatives at the critical point. These are also result
of a weighted summation of the eight vectors at the corners but now in a
differential sense.

With this tuple of four equations it is clear that two 4-tuples of them are
needed to recover the eight vectors at the corners. As one critical point gives
four equations as mentioned above, one cell needs two critical points to
have a single solution and therefore an unique reconstruction. In general, if
the matrix of coefficients of the linear equation system has a the same rank
as the matrix of coefficients extended by the solution vector (i. e. extended
matrix of coefficients), the system is solvable. If in turn the latter matrix’
rank is equal to the number of unknowns (in this case 8), then there exists
an unique solution.
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With the help of formula 5.1 it is a straightforward exercise to calculate
the eight vectors at the corners of the cell. These eight vectors can be used
to interpolate every vector within this cell trilinear. Equation (3.6) performs
this operation. As demanded the interpolation generates critical points at
the given locations.

5.3 general approach

From the previous example, I conclude to the following general approach.
For the reconstruction, n critical points with their Jacobian are given and
the underlying grid is known. At all vertices of the grid the vectors should
be reconstructed to make up a trilinear interpolated vector field which
matches the given critical points. Moreover no additional critical points
should be generated. The local reconstruction implies that all cells share
topological information only if they are directly connected, i. e. that they
share at least one vertices. Given two cells that are not connected by that
means, one cannot conclude from the one cell’s topological information to
the topological information of the other.

One simple and brute force approach could be to generate a system
of linear equations. As shown in equation 5.1, each critical point makes
up four equations which can recover four vectors at the cell’s vertices.
Let n be the number of critical points and k the amount of cells for the
reconstruction. All k cells form up to a cuboid, i. e. k = l ·w · h, and have
together m = (l+ 1) · (w+ 1) · (h+ 1) vertices. Then, one could make up a
system of 4 ·n linear equations and m unknowns. This could generate a
very huge system of equations which does not entirely fits into memory. For
example, one used data set has 64,000 vertices and 482 critical points. The
matrix of coefficients would be sparse only if there are not too much critical
points but on the other hand, the less critical points, the less topology
information can be relied on which gives in turn a less confidential result.
In general, one does not get a system of equations which has a unique
solution. Mostly only approximations will generate a solution, like least
squares. Therefore, it was necessary to search for alternatives. The next
sections will give an approach which follows a divide and conquer strategy.

I separate the local reconstruction in three general steps. The first is the
reconstruction of cells which contain at least one critical point. This step
is followed by the reconstruction of separation lines which start at saddle
critical points. This will also generate vector information in cells where
the lines pass. The last step is to reconstruct the vector information at the
remaining cells with the help of a diffusion. The reconstructed information
in one step is never overwritten by a following step.

5.4 reconstruction of cells with topology

The reconstruction of cells with topology is the first step in reconstructing
vector fields locally. For this purpose, all cells which contain critical points
are separated into four different types: isolated cells with one, two and
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more than two critical points and clustered cells. The first three types label
cells which are not proximate to other cells with critical points, i. e. they do
not share any vertex with other such cells. This coins the term isolated. The
fourth type is for those cells which are connected and have critical points,
therefore clustered. This connection is established if two cells with critical
point share one, two, or four vertices with each other. Each type will be
considered separately.

isolated cells with one critical point As the explanations in
5.3 cannot be applied to only one critical point, another approach is
needed. No direct reconstruction is done, but instead, a sampling
technique is used again. At the eight cell’s vertices vectors are sam-
pled with the help of equation (4.2). These eight vectors approximate
the original best when the eigenvectors of the Jacobian are pairwise
orthogonal and each parallel to one coordinate axis. With eleven
such critical points an average angle difference between reconstructed
vectors and original ones of less than 0.0037

◦could be generated. In
another test the difference was about 18.221

◦. This value was the
observation of testing 482 critical points from the Perlin data set (c. f.
7.3.1).

This approach can later be extended. One central question is, why
the eigenvectors of a critical points must be pairwise orthogonal to
get that nearly perfect result. In general, the eigenvectors are not
pairwise orthogonal. For now, the approach is used as described but
is left for further research.

isolated cells with two critical points If a cell contains two
critical points, the approach from section 5.2 comes to turn.

isolated cells with three or more critical points Cells with
more than two critical points could be handled with a system of linear
equations like in section 5.3. In general, this would yield a system
which has no exact solution as there are more equations than un-
knowns. Only an approximation can be applied. Another possibility
is to sample again vectors around each critical point and interpolate
these support vectors to the cell’s vertices.

For the course of this thesis, the latter possibility was implemented.
But no data set hold this critical point configuration in order to test
the result. This is left for further examination. Explanations in [13]
show that a maximum of six critical points can be possible for a
trilinear interpolation.

clusters of cells with critical points For clusters of cells where
each cell contains at least one critical point, one can set up a system
of linear equations. This system contains four equations per critical
point (c. f. 5.2) and up to m = n · 8− (n− 1) unknowns where n is
the number of cells and greater than 1. This number is an upper
bound where all cells are connected only by one vertex and two
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cells are only connected to one other cell. The lower bound for m is
m = (l+ 1) · (w+ 1) · (h+ 1) where l,w,h are the amount of cells in
length, width and height which make up a cuboid.

If the system of linear equations is too huge, it can be split into
subsystems. For the computation of one vertex all adjacent cells
with critical points need to be considered. One could convert the
reconstruction from cell-orientated to vertex-orientated giving the
possibility for parallel computing.

Again, for the Perlin data set the great majority of cells with critical
points formed clusters. Implemented was the approach using a
system of linear equations.

After this step, at all vertices of cells with critical points a vector is given
which will be also part of the final result.

5.5 reconstruction of separation lines

This section deals with a global strategy which supports the local recon-
struction. As the critical points are given, one can try to find separation
curves between them. These are stream lines which start and end in critical
points in direction of a eigenvector, c. f. 3.2.3. The only starting points for
this search are saddles which have in general one separation surface and
two separation curves. This makes it possible to search for them, sinks
and saddles can have arbitrarily many. One separation curve starts or ends
in the direction of the eigenvector whose corresponding eigenvalue has
a different sign than the other two, short sole eigenvector. The other starts
or ends in the opposite direction (eigenvector multiplicated by scalar −1).
Talking of starting and ending, this curve has a direction. The separation
curves are a global feature as they spread potentially over several cells.

The search for separation lines is as follows. From every saddle of the
topological skeleton the sole eigenvector is taken. A line is constructed
that goes through the current saddle point in direction of that eigenvector.
The following is done in both directions from the critical point. A sphere
is made up whose centre is on that line and whose surface contains the
critical point. One can see that there exist two possible spheres. The initial
distance between centre of sphere and the saddle must be less than the
minimal distance between all critical points to ensure that the sphere does
not initially contain any critical points.

This sphere is iteratively growing from the minimal distance, i. e. the
centre moves along the previous line away from the initial critical point,
see Figure 18a. If the sphere contains one or more critical points, the one
that is nearer becomes the ending point candidate for the separation curve.
The found critical point must be analysed if it can be the other end of the
separation curve in respect to the starting critical point. See Figure 18b for
the conditions. If a connection is not possible, the next nearer critical points
are considered or the iteration is continued. It is possible that the search
will leave the convex hull of all critical points, i. e. no other critical points
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(a) Search and construction of separation curve be-
tween saddles s1 and s2, red and blue arrows de-
pict eigenvectors (repelling and attracting, resp.),
circles represent the growing steps

(b) Possible connections between
critical points (foci and nodes
are not distinguished, arrows
represent eigenvectors)

Figure 18: Constructing the separation line between critical points

can be found. This is prevented by stopping the growing when diameter of
the sphere reached a maximum, e. g. the diameter of the domain.

Having the connection between two critical points, one can reconstruct a
separation curve. This is done by a quadratic or cubic Bézier curve whose
first and last control points (p0 and p2 or p3) are just the critical points,
p0 is always the starting one. If the ending critical point is not a saddle
the quadratic curve is used and p1 is constructed with the help Thales’
theorem, see Figure 19a. p1 is that point which makes with p0 and p2
a right triangle and the side p0p1 is in direction of the sole eigenvector.
If this line contains p2, the curve degenerates to a line. The separation
curve between two saddles is a cubic Bézier curve where p1 lies on the
line through the first critical point in direction of the sole eigenvector and
p2 lies on the line through the second critical point in direction of its sole
eigenvector towards the first critical point. The two points will be placed
that the three line segments p0p1, p1p2 and p2p3 have the same length,
see Figure 19b. Bézier curves were chosen because they are wide-spread
in computer graphics and allow a simple definition and construction. The
placement of their control points is done in a most simple way.

After having computed those separation curves for all critical points,
there can exist cells which have no critical points but one or more such
curves going through them. Every curve can be used to generate sampled
vector, i. e. tangential vectors, within the cell. As the curves are Bézier
curves, a differentiation at a curve point gives the tangent direction. The
approach is to have at least eight sampled vectors which serve as n sup-
porting vectors for a system of n linear equations where the eight vectors
at the cells vertices are the unknown, c. f. 3.4.3.

The previous step can depend either on the computed curves or only
on the direct connecting lines. However, both alternatives must generate
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support vectors at locations which are not coplanar. Otherwise the system
of linear equations will have no solution. For example, for the data set 5CP
(c. f. 7.3.1, 19a ) only straight lines as separation curves were generated.
Comparing with the original vector field, the vectors are aligned to the
lines. This case was handled or implemented.

(a) Separation curve constructed between
saddle and source

(b) Possible connections between two sad-
dles (foci and nodes are not distin-
guished, arrows represent eigenvectors)

Figure 19: Constructing the separation curve between critical points (projected
into two dimensions, arrows represent eigenvectors)

The approach does not distinguish between nodes and foci critical points,
c. f. Figure 8. This would be a point for improvement as foci have a different
flow behaviour than nodes. Figure 20 shows two final reconstructions of
separation lines in two data sets which were used for evaluation in chapter
7.

(a) Data set 5CP (b) Data set Perlin

Figure 20: Reconstructed separation lines, critical points with their cells. Orien-
tation of the separation lines is from red to blue. Images made with
JFlowVisFW.
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5.6 diffusion of vector information

This last step is mostly inspired by the Heat Equation ([17]). At this
point, there are still some cells which are not reconstructed, i. e. vectors at
some vertices are missing. Mainly because no topological information was
available in the previous steps. That said, expectations to the correctness of
the following reconstruction should not be too high.

The diffusion in the Heat Equation describes the distribution of heat in a
region with regard to the time. In the scenario of known vector information,
I use a similar approach to diffuse these to locations where still no vector
information is present. As the domain is in Cartesian coordinates, the
vector Laplacian reduces to a scalar Laplacian applied to each component
of the vectors, see equation 5.2 where V is the vector field and Vx, . . . , Vz

.denote its three components.

∇2V = (∇2Vx,∇2Vy,∇2Vz) = (
∂2Vx

∂x2
,
∂2Vy

∂y2
,
∂2Vz

∂z2
) (5.2)

In this case, I need a discretization of the scalar Laplacian because the
values are given and searched for at grid vertices. This is done with the
help of finite differences, see equation 5.3 which is applied for every of the
three components.

∆f(x,y, z) ≈f(x− h,y, z) + f(x+ h,y, z) − 2f(x,y, z)
h2

+
f(x,y− h, z) + f(x,y+ h, z) − 2f(x,y, z)

h2

+
f(x,y, z− h) + f(x,y, z+ h) − 2f(x,y, z)

h2

(5.3)

For the implementation I have chosen the value h to be variable. At most,
it should be the extent of one cell. But preferably, it is a half or a fourth of
the cell extent. This will work in subvoxel space and allowing a better and
more subtle approximation. If the value for h is chosen to be less than one,
the values within cells are interpolated trilinear.

Figure 21: The three-dimensional Gaussian filter kernel (unweighted)

The previous equation (5.3) takes for a value at (x,y, z) only the six near-
est neighbor values into account which make up a so-called star. It is also
possible to use a bigger kernel which uses not only the six but the 26 nearest
neighbors of a value. This gives a smoother result but is computational



5.6 diffusion of vector information 37

more expensive. At locations where no vector information is present a value
of zero is assumed. The diffusion is applied n times. In every iteration the
already known values are restored at their location because they should
not be manipulated by the diffusion. For the implementation I have chosen
the filter kernel shown in Figure 21 which is a three-dimensional Gaussian
kernel. The Gauss filter performs a diffusion, too, and is wide spread in
image processing ([4]). Using the central differences gives only a rough
approximation of the second derivatives. In three dimensions this can be
achieved by a convolution with a Gaussian kernel. If this convolution is
used at a subvoxel scope, the approximation should be sufficient.

The process will let the vectors converge to a state of equilibration which
is considered when the vectors do not change for one iteration more than a
given threshold. One problem is that the process may converge to a state
which is worse than the states before. This cannot be detected without the
help of the original vector field. The iteration must last at least until at
every location is a vector information generated.

(a) 5CP data set (b) Perlin data set

Figure 22: Convergence of the diffusion, black shows the change of the difference
of the original to the reconstructed vector field over the iterations (left
axis), gray is the change of that difference between two iterations (right
axis). The diffusion was not used at subvoxel scope.

The figures in 22 show two examples of the convergence. The left
Figure is for the 5CP data set and the right for the perlin data set, see
chapter 7 for information to both data sets. The two charts show how the
difference of two vector fields changes over the iterations of the diffusion,
measured in degree. For the 5CP data set this value raises fast in the first
iterations. This is because the diffusion starts with only 0.1375% known
data which is diffused, i. e. from 64,000 locations only at 88 of them the
vector is known. This results in many uncertainties. After 16 iterations
the difference decreases again to converge against a value of about 40

◦.
The other data set starts with 4.9203% known data. Again the difference
between original and reconstructed vector field increases to decreases
shortly after the sixth iteration. But than the value for the difference seems
again to slowly increase, converging against 40

◦. It was not reviewed if
the approach always converges against that value and if the approach has
other results for a subvoxel scope.

The result of this diffusion is to have vectors computed at every location
of the input grid.
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5.7 conclusion

This chapter demonstrated a possibility of reconstructing a vector field
when given only its first-order critical points. The reconstruction generated
a local vector field which is in each cell trilinear interpolated. This can
be seen as an extension to the approach presented in 2.2 where the space
was subdivided into tetrahedra and the constructed vector field was linear
interpolated in each tetrahedron.

Figure 23 concludes the three steps of this local reconstruction. The
first step involves finding the cells with critical points of the grid and
reconstructing the vectors at all vertices of these cells. The second step
is to reconstruct the separation lines and to use the resulting curves to
reconstruct the vectors at the passing cells if not already known. All
information of the two first steps will be diffused in the last step, resulting
in a complete reconstructed local vector field.

Figure 23: The three steps of local reconstruction presented in this chapter.

The results of this chapter are evaluated in chapter 7.
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I M P L E M E N TAT I O N O F A P R O T O T Y P E

This chapter will give a review for the practical part of the thesis, the
implementation of the previous shown, theoretical insights.

6.1 used software

For the development, I have chosen Java as programming language. It
gathers multiple advantages like being widely known and -used, mature
and it gathers a huge amount of available frameworks and libraries. It is
also important that it is well-known to the author. On the other side Java has
the repute for not being very fast in comparison to more machine-orientated
languages like C++. But as this should be a prototypical implementation,
Java suffices and gives fast results. Due to the relationship between C++
and Java, it is possible to port the code to C++ afterwards.

Additionally the following libraries and packages for Java were used. All
of these are open source software and can be downloaded freely with their
sources.

opengl To visualise vector fields and corresponding mathematical struc-
tures I have chosen OpenGL. There exists a Java binding called JOGL
which mimicries standard OpenGL code from C which in turn allows
a straightforward translation of JOGL code to OpenGL in C(++).

apache commons math This library is mostly used for analytical ge-
ometry and linear algebra purposes which disburdens to code existing
algorithms again.

apache log4j Log4j is a quasi standard for handling logging in Java
programs. It allows a finer configuration and a more sophisticated
use than simple System.out.println() calls. The main task is to give a
first level of debugging information.

guava Although Java comes with a huge class library for handling collec-
tions and input/output, Google’s Guava provides more sophisticated
methods for handling data structures. Important uses concentrate on
generating hash codes for objects in order to find fast a certain object
in a huge collection.

junit This is a library for unit testing Java program code. To ensure the
program works correctly the most important classes have so called

39
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unit tests. They can be executed to tell if the classes work the way they
were intended. In fact, often the tests were written firstly followed
by implementing the classes until the tests assured that they work
correctly.

All the practical work resulted in a software library I named JFlowVisFW
which offers the possibilities to read, write, visualise and reconstruct vector
field and their corresponding features.

6.2 implemented features

This section will give an overview for the most important parts of the
framework JFlowVisFW. It separates in the three parts Algorithms and
Reconstruction, Visualisation and Input and Output. The first does the
main work which is the reconstruction of vector fields. The second is used
to show and explore the results of the reconstruction. Input and Output as
third part acts as connection for importing and exporting outer data.

6.2.1 Algorithms and Reconstruction

The JFlowVisFW implements the interpolation algorithms mentioned in
section 3.4 in a way the reconstruction can use it. The vector diffusion
from section 5.6 is implemented to use multiple parameters like iterations,
used diffusion kernels and sub voxel scope. The inverse distance weighting
interpolation can be extended to support other approaches (like nearest
neighbor).

All entities which this work deals in respect with vector fields, are
modeled by object-oriented classes, like CriticalPoints and PlainVectorField
as concrete, and AbstractVectorField as abstract base classes. The steps
of the global and local reconstruction handle with these objects and are
logically split in separate classes offering their functions. For example,
the reconstruction of the separation lines from section 5.5 is divided into
finding the pairs of critical points which are thought to be connected and
modeling the separation curves.

Both reconstructions are implemented as systems of combining different
algorithms which allows to omit some steps of the reconstruction. On the
other hand, separate steps can be individually tested visualised to study
their performance.

6.2.2 Visualisation

There are two important topological features of a vector field which needs
to be visualised: Critical Points and Boundary Switch Curves. Furthermore
it is important to show vector fields, too. The following list gives an insight
in the visualisation techniques. Mathematical details can be found in 3.2.1
(critical points) and 3.2.2 (boundary switch curves).
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critical points A visualisation sample of six different critical points is
shown in Figure 24a. I was inspired for the visualisation of critical
points by [14]: a critical point is depicted by an icon, a sphere for a
node, a double cone for a focus (sinks and sources). The colour for
a sink is blue and for a source red. For node saddles a flat disc and
for focus saddles a flat cuboid is used. Both types of saddles’ icons
are yellow. An addition to the model in [14] is the drawing of the
eigenvector lines. Each critical point has three eigenvectors whose
eigenvalues determine if they are kind of attracting (<(λ) > 0) or
repelling (<(λ) < 0). The former kinds are drawn blue and the latter
red, likewise that a sink as fully attracting critical point is drawn
blue. With the drawing of the eigenvectors one can distinguish also
the saddles into (mostly) attracting and (mostly) repelling just by
counting if there are more red or more blue drawn eigenvectors.
The information of focus critical points if the imaginary part of a
eigenvalue is less (or greater) than zero is encoded by a lighter (or
darker) colour.

boundary switch curves The boundary switch curves of a vector
field are stored as a point list and this makes the drawing of them
to a straight forward exercise in OpenGL: drawing stripes of lines.
Figure 24b shows an example of a dataset. The thinner lines are the
boundary switch curves. The thicker ones are just the edges of the
domain and shown as orientation.

vector fields Under the assumption that a vector field is given in a
grid based structure, i.e. vectors are mapped to all cell vertices, a
visualisation of all these vectors at once will produce a visual clutter.
I decided to use a sliced version of that idea showing only vectors at
points which lay in the same plane. These slices can be moved to get
an impression of the vector field. Figure 25a gives an example. There
are shown three slices of a vector field at once and also the edges of
the boundary domain for orientation. The lines only show direction
not length of the vectors, all vectors have the same length. For this
purpose the longer vectors are drawn in red while the shorter one are
in blue. In between they become white.

These are the basic visualisation techniques. On top of them I made
some exploring tools. As showing all information of a three dimensional
vector field at once produces a visual clutter, I developed the idea of the
slices, mentioned in the above list. This is inspired by tomography and also
allows interactive exploration of the data.

length of vectors Figure 25b gives an example of a slice showing the
length of the vectors of a field. One can also see the critical points of
the corresponding data set. Now, the clue is that a red-yellow-green
colour scale is used. The longest vectors are represented by a green
data point, the shorter a vector the colour changes over yellow to red
where pure red is zero length vectors. There are nine critical points
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(a) Critical points (with eigenvectors) (b) Boundary switch curves

Figure 24: Two topological structures of a vector field rendered in JFlowVisFW

in the figure that are just one unit away from that slice. One can see
that the colour goes to red where there is a critical point.

difference of two vector fields Figure 25c shows an example of
visualising the difference between two vector fields. Difference means
here, take the two vectors of each field at a point and compute the
angle between them. The values of this difference range from 0

◦to
180
◦It does not take into account the length of the vectors. Again this

difference values are mapped against a colour scale. Vectors which
have the same direction produce a green data point. The colour
changes over yellow, orange, red, violet to white for the greatest
difference. This scale is also exchangeable.

orientation of the vectors Figure 25d depicts a sample of a slice
which draws the orientation of the vectors. Orientation means here
that the x,y, z components of the vector are translated into r,g,b
components of the RGB color space.

The so-called slice drawers can be set to different colour scales giving
the control on which difference value for example matches to which colour.
There exists already some scales, see Figure 26 for common used scale
for the difference between two vector fields. 0

◦is the smallest difference,
therefore having green assigned. While getting larger in the difference, the
scale gets over yellow to red and violet.

For example, the user can use the difference visualising slices to explore
where the reconstruction generates the greatest failure. This can be com-
bined with the presence of the critical points giving possibly the insight
that the reconstruction is best in the surrounding of the critical structures.

6.2.3 Input and Output

The JFlowVisFW software handles different input and output file formats.
It can read plain ASCII file formats for critical points, boundary switch
curves and vector field. In addition, vector fields and boundary switch
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(a) Vector field (b) Length of each vector

(c) Difference of two vector fields (d) Orientation of the vectors

Figure 25: Visualisations of vector fields and corresponding features like length
and orientation of vectors or differences between vector fields. All
pictures showing the edges of the domain.

Figure 26: Example for two scales which are used in JFlowVisFW
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curves in the Amira1 ASCII format can be read, too. The following list
gives a short overview.

plain vector field Each line contains the three coordinates of the
position and the three components of the vector, separated by white
space

plain boundary switch curves Each line contains the coordinates
of a BSC as line loop, different BSC are separated by empty lines

plain skeleton Enumeration of critical points with their location and
corresponding Jacobian matrices

amira vector field Contains an implicit description of the grid fol-
lowed by the one vector per line in a certain order

amira boundary switch curves Contains different data section. An
indexing of points is followed by linking the indices to a BSC

The input is realised for all formats, the output only for the vector field
formats. Due to its architecture, it is easy to extend JFlowVisFW the read
and write of other formats if needed.

6.3 prototype

This section will describe the result of this diploma thesis: a prototype of an
application for reconstruction of vector fields. The graphical user interface
(GUI) of that prototype is shown in Figure 27. It offers controls for input,
output and visualisation. In the upper panel, named Input, the user can
choose which topological structures should be read. This includes at least
the critical points and can be further extended by the boundary switch
curves. In addition, it is possible to choose the original vector field which
can be later visualised with the reconstructed one. The supported input
files can be in plain and Amira formats. The panel in the middle, named
Output, offers options whether writing the result of the reconstruction to
which file. Here the output format must be explicitly chosen. An important
option is the scope: the user must set if the reconstruction should be in a
global or in a local sense. The resolution of the grid can be edited. If the
original vector field is given, the grid will be deduced from it. The grid
is defined by the three values min, max and spacing in three dimensions,
resulting in a regular grid.

The interactive part of the prototype is the visualising of the result.
The two lower panel, named Visualisation and Tune Visualisation, give the
options to show various visualisations mentioned in section 6.2.2. Also,
if the original vector field was given, the user can explore the differences
between it and the reconstructed vector field by enabling the Show Difference
option. The slider named Slice allows to move the active visualisation, see
6.2.2 for details to the sliced visualisation.

1 A visualisation and data-analysis platform, see http://amira.zib.de/

http://amira.zib.de/
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Figure 27: Graphical User Interface of the prototype for reconstructing vector fields
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If every input parameter is tuned and the user hits the Generate button,
the reconstruction will start. If the visualisation was enabled, in a second
window the results will be shown.

6.4 results

This chapter gave insights in the programming tasks and their results
during this diploma thesis. Vector fields cannot only be reconstructed, the
results can be visualised in context to the original input structures. This
gave direct feedback of the performance of the reconstruction.



7
E VA L U AT I O N O F T H E R E S U LT S

After shown the theoretical and practical results of the thesis, these have to
be evaluated. This will include experiments which measures the quality
of the approaches. This chapter is divided for the local and the global
approaches prefaced by an introduction section. During the evaluation,
a computer with 8 gigabyte of RAM and 4 processors with 2.53GHz was
used.

7.1 introduction and expectations

What this chapter should evaluate, is how good the approaches in chapters
4 and 5 reconstruct the original vector fields. This performance should
be measurable by numbers. The output of both approaches are vectors. I
decided to measure the angle between given vectors of the original vector
field and the ones of the output. In order to do so, the approaches must
reconstruct at all location where the original vector fields have vectors. The
comparison is done with the help of histograms showing the amount of
angles in respect to intervals and to the total number of vectors. This is
done with nine intervals from 0

◦ to 90
◦ and 18 intervals from 0

◦ to 180
◦.

The angle between the vectors of the original and the reconstructed
vector field can be considered as a local performance number at every
location. To get one global indicator all angles can be summed up and
divided by their amount, giving simply the average of the angles. Figure
28 shows an example of an original vector o and two reconstructed vectors
r1 and r2. Two cases are considered: angles between 0

◦ and 180
◦ and on

the other hand 0
◦ and 90

◦. The latter case is similar to the first but all
angles greater than 90

◦ are subtracted from 180
◦. Note that angles between

three-dimensional vectors are within 0
◦ and 180

◦, inclusively. This gives
a measurement which ranks vectors worse the more they are tending to
90
◦. This case means in other words that angles are not considered by

their orientation, i. e. parallel vectors with different orientation are then
considered to be equal. In Figure 28, vector r3a has an angle of more than
90
◦ to vector o. It is then mirrored at the imaginary dashed line which is

perpendicular to the original vector o. This is the same as the “subtraction
of 180

◦”. The three colours in the figure are inspired by the visualisation in
section 6.2.2.

Not considered is the relation of the lengths. The two approaches do not
try to reconstruct the length of the vectors but the attention lies only on

47
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Figure 28: Principal difference between two vectors o and ri. If a reconstructed
vector has an angle greater than 90

◦, like r3a it is subtracted from 90
◦,

to result in vector r3b

their direction. Especially the result in the global approach can contain very
short vectors, in dimensions of 10−8 and less, depending on the parameters.

All charts in this chapter show the result of the reconstruction as the
difference between the reconstructed and the original vector field. They
map the relative frequency of a vector difference to a interval of angle
which is shown by bars. Additionally an accumulated relative frequency
for differences less or equal to the current interval is depicted with a line.

7.2 global reconstruction

The global reconstruction of a vector field is described in chapter 4. This
section will evaluate the performance of the approach when using only
critical points and when additionally the boundary switch curves are taken
into account. The amount of samples per critical point is 1000 and the
distance ε to a critical point of the samples is 10−1. The distribution strategy
for the samples is to use 10 layers of samples, as described in the chapter.

7.2.1 Test data

The test data consists of two sets of vector fields. They are both depicted in
Figure 29. The equation in (7.1) gives an analytic description of the vector
field VRTD. For the other data set GCS no analytic description is given. The
names are short forms of Global Case Shepard and VR Test Data, respectively.

v(x,y, z) =

 sin(0.15) · sin x− cos(0.15) · sin(y)

− cos(0.15) · sin x− sin(0.15) · sin(y)

− sin z

 (7.1)

The GCS data set contains four repelling and one attracting nodes
(sources and sink, blue and red spheres, see Figure 29a) and 14 node
saddles (yellow discs). No data for the boundary switch curves is given.
The original vector field is rastered in a 32 · 32 · 32 = 32768 values grid,
going from (−3,−3,−3) to (−2.8125,−2.8125,−2.8125).

The VRTD set contains four repelling and two attracting foci (blue and
red double cones), ten repelling and five attracting node saddles, and two
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repelling and four attracting focus saddles, resulting in 29 critical points.
Additionally the boundary switch curves were given. The original vector
field is sampled in a 64 · 64 · 64 = 262144 values, regular grid, going from
(−4,−4,−4) to (3.875, 3.875, 3.875). In relation to the GCS data set, this one
has eight times more sampled locations. The minimal distance of the all
critical points is for the GCS data set about 0.9788 and for the VRTD data
set 3.1416 (ca. π).

(a) The GCS data set: 19 critical points (b) The VRTD data set: 27 critical points and
additionally boundary switch curves

Figure 29: Two test data set for the global reconstruction illustrated by JFlowVisFW
with domain bounding box in white

Because of the absence of the boundary switch curves in the GCS data set,
the global reconstruction described in section 4.2 will be used for evaluation.
The extended approach with boundary switch curves (c. f. 4.3) will be used
to evaluate data set VRTD.

7.2.2 Results for the GCS data set

The approach reconstructs a great amount of vectors that are perpendicular
to the original vectors, see Figures 31a and 31b. Almost 37.3% of the vectors
are between 80

◦ and 100
◦. Albeit, the third most frequent interval is already

[0◦, 10◦) with 7.3%. This distribution of vectors seems to be no coincidence,
however knowing that a vector is almost perpendicular to the original does
not imply in which direction to rotate it to become a better reconstruction
for the original. This is due to the three-dimensional space. At least for this
data set, the approach reveals some structure of the original vector field by
its reconstruction.

7.2.3 Results for the VRTD data set

The VRTD data set was reconstructed twice: without and with involving
the given boundary switch curves. Figures 32a and 32b show the result
for the first case, 33a and 33b for the second case. The main observation
is that the approach with the boundary switch curve is not significantly
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better than the one without. In fact, without the reconstruction produces
an average of angle difference of circa 47

◦ while the reconstruction with
boundary switch curves generates an average of 50.5◦.

A second observation is that the reconstruction at all seems to be only a
guessing of vectors. Taking the range between 0

◦and 90
◦, all intervals have

an average frequency of about 12%, except the first which has significantly
less. This means more than 90% of the vectors are far from reconstructed
correct.

In contrast to the previous data set, it should be analysed why the
approach fails here so much.

7.2.4 Parameters and Runtime

The following was tested with the GCS data set. Results of the reconstruc-
tion are within 0

◦and 90
◦.

The two parameters have different influence on the result. Firstly, the
sample amount is set to ten different values. Figure 34a shows the result
and, in direct relation, the amount of time it took to compute the result for
the reconstruction. The result of the reconstruction degrades from amount
25 to 100 but than slightly decrease to converge to a value of circa 59.5◦.
The only effect of increasing the amount of samples beyond this point is
to elongate the time of the computation. Reasons for the stagnation of the
result at the value of 100 samples and more, may be that even more samples
do not contribute more topological information for the reconstruction. It
is remarkable that the reconstruction is slightly better for 25 than for 100

samples. This fact needs some more attention. Probably, it is not enough to
generate equally distributed samples around the critical point. It should be
checked if less samples result in a better reconstruction if they are arranged
in regard to the Jacobian and their eigenvectors. All test runs used a value
of circa 0.49 for epsilon which is the half of the minimal distance of all
critical points.

Secondly, the distance between the samples and the critical point is set
ten different values. Figure 34b shows the relation of these values to the
result of the reconstruction. Values lower than 0.01 do not change the
result significantly. If the value gets too small, the result should become
unpredictable, as numerical instabilities occur. All test runs used a value of
100 for the sample amount per critical points.

At least the first parameter is left for further optimisations.

7.3 local reconstruction

The local reconstruction of a vector field is described in chapter 5. This
section will evaluate the performance of the approach as a whole and parts
of it. These are reconstructing cells from critical points and from separation
lines, and the diffusion of the vector information as the final step which
makes three configurations: consider only cells with critical points, consider
these cells again but additionally diffuse the result in the whole domain,
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and finally the intermediate step of reconstructing vector information from
separation lines. In general, only the diffusion generates vectors at all
vertices of the grid. For all reconstructions, an iteration amount of 15 steps
and a subvoxel scope of 0.25 was chosen for the diffusion.

7.3.1 Test data

There are two different data sets used in the evaluation: an highly symmet-
ric (called 5CP) and a more real life data set (called Perlin), Figure 30 gives
an overview.

(a) The 5CP data set (b) The Perlin data set

Figure 30: Two test data sets for the local reconstruction illustrated by JFlowVisFW
with domain bounding box in white

The 5CP data set contains four sinks and two source, completed with
five saddles, making up eleven critical points. All of which are nodes. One
important remark: all eleven Jacobians are diagonal matrices and having
pair wise perpendicular eigenvectors aligned to the coordinate axes. On
the other hand, the Perlin data set contains 344 focus saddles, 83 node
saddles, 26 focus sinks and 29 focus sources, summing up to 482 critical
points. Both vector fields are rastered in a Cartesian grid between the points
pmin = (0, 0, 0) and pmax = (39, 39, 39). The minimal distance between all
critical points is in the 5CP data set 9.7347 and in the Perlin data set 0.0113.

7.3.2 Results for the 5CP data set

Figure 35 shows the results for reconstructing the 5CP data set locally. The
grey bar at the interval of [0◦,10

◦] stands for the reconstruction of cells
with critical points. As this data set has eleven critical points, each in its
own cell, the bar represents 88 almost correct reconstructed vectors. None
of them has an angle of more than 0.5◦ to the original vector. This is due to
the method described in section 5.4. In relation to all 64,000 vectors of the
grid, this makes less than 0.2% of the reconstruction.
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Applying the diffusion generates vector information at the remaining
locations. This result is shown by the black bars. In both charts the three
highest bars are for the three lowest intervals. This makes more than 50%
of all vectors could be reconstructed with a difference of 30

◦ or less. The
average angle for all reconstructed vectors is for intervals up to 90

◦
32.9◦.

Due to an implementation error, during the experiment only 6490, i. e.
ca. 10% of all vectors were reconstructed. Nevertheless, this result can be
taken representatively but further analysis should be made.

As seen in Figure 20a, reconstructing separation lines for this data set
gives only straight lines. For now, the approach cannot use these single
straight lines to reconstruct vectors of a cell. However, it would be possible
if there were three straight lines within one cell which are not coplanar.

7.3.3 Results for the Perlin data set

Figure 36 shows the results for reconstructing the Perlin data set locally.
Again, the white bars and lines represent the reconstructed vectors at cells
with critical points. The grey bars and lines stand for the additional diffu-
sion of the vector information. Finally, the black bars and lines represent
the whole local reconstruction with taking the reconstruction of separation
lines into account.

One can see that the highest white bar is for the best angle interval
[0◦,10

◦] and already 46% of the vectors are reconstructed with a difference
to the original from not more than 30

◦. This step reconstructed 3117 or
4.9% of 64,000 vectors. The diffusion of the vector information moves the
peak of the most reconstructed difference to the interval [30

◦,40
◦].

Figure 20b shows that many separation lines could be reconstructed for
this data set. Despite this fact, using these for the reconstruction makes the
result worse than without. The black bars and lines in Figure 36 depict that
the majority of the vectors are reconstructed with a big difference to the
original ones. Almost 50% have a difference of 60

◦or more.
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Figure 31: Histograms for the difference of the vectors from the original and
reconstructed data set, for GCS and VRTD, no boundary switch curves
were used in the reconstruction, grey bars show relative amount for the
difference (left axis), black line shows accumulated amount (right axis)
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Figure 32: Histograms for the difference of the vectors from the original and
reconstructed data set, for GCS and VRTD, no boundary switch curves
were used in the reconstruction, grey bars show relative amount for the
difference (left axis), black line shows accumulated amount (right axis)
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Figure 33: Histograms for the difference of the vectors from the original and
reconstructed data set, for VRTD, boundary switch curves were used in
the reconstruction, grey bars show relative amount for the difference
(left axis), black line shows accumulated amount (right axis)
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(a) Amount of samples per critical point increases exponentially (grey bars). The black
line shows the time of computing the reconstruction.

(b) The distance of samples to the critical point decreases logarithmically (grey bars).

Figure 34: Histograms showing the changing of the average result of the recon-
struction in relation to the two parameters, sample distance to critical
points and sample amount per critical point.
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Figure 35: Histograms for the difference of the vectors from the original and
reconstructed data set, grey bars and lines represent the reconstruction
in cells with critical point, black ones also include the diffusion. The
grey line is everywhere at 1.0 and the grey bar is 1.0 for [0◦,10

◦].
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Figure 36: Histograms for the difference of the vectors from the original and
reconstructed data set, white bars and lines represent the reconstruction
in cells with critical points, grey ones also include the diffusion and
black ones take additionally the reconstruction of separation lines into
account.
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C O N C L U S I O N

To conclude this diploma thesis this chapter sums up and interprets the
results and gives a perspective.

8.1 summary of the results

This diploma thesis has shown what possibilities exist to reconstruct vector
fields from topological data, namely critical points and boundary switch
curves. This reconstruction was considered in a global (Chapter 4) and a
local sense (Chapter 5).

To practically use the insights of the reconstruction, a prototype was
developed which can read different input formats (Chapter 8). With the
input data a reconstruction can be done whose result can again saved to
file. One notable aspect of the prototype is its ability to visualise the results
of the reconstruction together with the input data.

8.2 interpretation and comparison

Chapter 7 gave an evaluation of both approaches. The global reconstruction
revealed as an unsatisfying approach. It could not be used to reconstruct a
majority of vectors right. Nevertheless, it seems that the approach needs
some more attention. Probably further research will make it work better. As
section 7.2 showed, at least for one data set an interesting distribution of the
reconstructed vectors could be observed: the majority of the reconstructed
vectors were orthogonal to the original ones. This leads to the assumption
that the approach needs further tuning.

On the other hand, the local reconstruction was most successful when
considering cells of the grid which contain critical points. As these points
are the only information used in this approach, first improvements of the
approach should start there. For certain critical points, a nearly perfect
reconstruction of the vectors of the cell containing these points could be
achieved. This should be expanded to all types of first-order critical points.
The diffusion of the vector information showed that the reconstructed
vectors could be successfully used to generate vector information at cells
where no critical points reside. The reconstruction of separation lines
between critical points is one try to generate extra topological information
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at cells where no critical points are observed. As the evaluation showed,
this did not work as expected.

8.3 limitations and perspectives

There are some limitations for the presented reconstruction which should
be addressed here. First, the approaches use only first-order critical points.
The two first approaches presented in chapter 2 work with higher-order
critical points. It should be analysed if the construction there can be
combined with parts of the approaches in this thesis. Namely, this thesis
could support higher-order critical points for the reconstruction and both
construction approaches could be extended to use trilinear interpolation,
i. e. not depending on a tetrahedron net but on a regular or Cartesian grid.

As this work in the local approach only uses trilinear interpolation, it
should be researched if it would have benefits for supporting tricubic
interpolation. This was not done here because of the assessed amount of
work.

Another limitation is the sole support for parameter-independent vector
fields. Further research is left for reconstruction of vector field which
change over time, for example.

The very next step for the global reconstruction will test if it is better to
interpolate the Jacobians of the critical points than first sampling vectors
around them and interpolating these.
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A P P E N D I X

a.1 distribute points equally on sphere surface

There exist many approaches to distribute points most equally on the
surface of a sphere. In fact, due to the nature of the sphere surface this task
is by no means trivial. One can see an analogy in projecting the world map
from a globe to a plane where there are also many projection styles. All of
them will stretch and deform parts of the topological data of the map. It is
easy to distribute points equally on a plane or a rectangle. Mapping this to
the surface of a sphere changes the distribution.

A first idea is to take a regular cuboid and equally distribute on each
of the six faces an amount of n2 points. Mapping all these 6 · n2 to the
inscribed sphere of the cube gives a first approximation for the problem, see
Figure 37. The black lines connect the centre of the inscribed sphere with
points on the cube surface. Where the intersect with the sphere surface, a
point for the solution is generated.

(a) Strategy of the approach (b) Result of the approach for 1350 (= 6 · 152)
points

Figure 37: A simple approach for equally distributing points on a sphere

A nearly perfect algorithm is given by [8]. The JFlowVis Framework uses
a modified version, mentioned in [12]. It uses a spiral that goes from one
pole of the sphere to the other. The next listing gives the pseudo code.

Listing 1: Algorithm for distributing points nearly equally on a sphere’s surface
([12])

public static double[][] distribute( int n, double eps ) {

// eps is distance from centre

// n is amount of points to be generated

double[][] result = new double[n][3]; // holding the result
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double[] theta = new double[n];

double[] phi = new double[n];

for ( int k = 1; k <= n; k++ ) {

double h = -1.0 + 2.0 * (k - 1.0) / (n - 1.0);

theta[k - 1] = acos(h);

if ( k == 1 || k == n ) {

phi[k - 1] = 0.0;

} else {

phi[k - 1] = (phi[k - 2] + 3.6 / sqrt(n * (1.0 - pow(h, 2.0))))

% (2.0 * PI);

}

}

// convert spherical coordinates

for ( int i = 0; i < phi.length; i++ ) {

result[i][0] = Math.cos(phi[i]) * Math.sin(theta[i]) * eps;

result[i][1] = Math.sin(phi[i]) * Math.sin(theta[i]) * eps;

result[i][2] = Math.cos(theta[i]) * eps;

}

return result;

} �
The complete Implementation can be found in DistributePointsOnSphere.java

of the JFlowVisFW.



A.2 equations 63

a
.2

e
q

u
a

t
i
o

n
s

E
qu

at
io

n
A

.1
gi

ve
s

a
m

at
ri

x
or

ie
nt

at
ed

fo
rm

of
eq

u
at

io
n

5
.1

.
x

,y
,z

is
th

e
lo

ca
ti

on
of

th
e

cr
it

ic
al

p
oi

nt
,J

x
,J

y
,J

z
ar

e
th

e
ro

w
ve

ct
or

s
of

it
s

Ja
co

bi
an

J
an

d
v 0

0
0
,.
..

,v
1
1
1

ar
e

th
e

ei
gh

t
ve

ct
or

s
at

th
e

ve
rt

ic
es

of
th

e
ce

ll.
N

ot
e

th
at
x

,y
,z

ar
e

ab
br

ev
ia

ti
on

s
fo

r
(1

−
x
),
(1

−
y
),
(1

−
z)

,
re

sp
ec

ti
ve

ly
.

A
x
=

b

     x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

x
y
z

−
y
z

−
y
z

−
y
z

y
z

−
y
z

y
z

y
z

y
z

−
x
z

−
x
z

x
z

−
x
z

x
z

−
x
z

x
z

x
z

−
x
y

x
y

−
x
y

−
x
y

x
y

x
y

−
x
y

x
y

      4
×
8

·                v 0
0
0

v 0
0
1

v 0
1
0

v 1
0
0

v 0
1
1

v 1
0
1

v 1
1
0

v 1
1
1

                 8
×
1

=

     0 V
x

V
y

V
z

      4
×
1

(A
.1

)





B I B L I O G R A P H Y

[1] Robert Bringhurst. The Elements of Typographic Style. Version 2.5.
Hartley & Marks, Publishers, Point Roberts, WA, USA, 2002.

[2] Paul Falstad. 3-d vector field simulation, 5 2011. URL http://www.

falstad.com/vector3d/. last visited: March 04th, 2012.

[3] P.A. Firby and C.F. Gardiner. Surface topology. 2nd ed. Ellis Horwood
Series in Mathematics and its Applications. New York etc.: Ellis Hor-
wood. 200 p. , 1991.

[4] B. Jähne. Digitale Bildverarbeitung. Springer, 1993. ISBN 354056926x.
URL http://books.google.de/books?id=5EShlIsf4TQC.

[5] Marcos Lage, Fabiano Petronetto, Afonso Paiva, Hélio Lopes, Thomas
Lewiner, and Geovan Tavares. Vector field reconstruction from sparse
samples with applications. In Sibgrapi 2006 (XIX Brazilian Symposium
on Computer Graphics and Image Processing), pages 297–304, Manaus,
AM, october 2006. IEEE. doi: 10.1109/SIBGRAPI.2006.47. URL http:

//thomas.lewiner.org/pdfs/vector_field_sibgrapi.pdf.

[6] Marcos Lage, Rener Castro, Fabiano Petronetto, Alex Bordignon, Geo-
van Tavares, Thomas Lewiner, and Hélio Lopes. Support vectors learn-
ing for vector field reconstruction. In Proceedings of the 2009 XXII Brazil-
ian Symposium on Computer Graphics and Image Processing, SIBGRAPI ’09,
pages 104–111, Washington, DC, USA, 2009. IEEE Computer Society.
ISBN 978-0-7695-3813-6. doi: http://dx.doi.org/10.1109/SIBGRAPI.
2009.20. URL http://dx.doi.org/10.1109/SIBGRAPI.2009.20.

[7] Wolfgang Nolting. Grundkurs Theoretische Physik 3 Elektrodynamik.
Springer, 2011. doi: 10.1007/978-3-642-13449-4.

[8] E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou. Minimal discrete energy
on the sphere. Mathematical Research Letters, 1:647–662, 1994.

[9] Donald Shepard. A two-dimensional interpolation function for
irregularly-spaced data. In Proceedings of the 1968 23rd ACM na-
tional conference, ACM ’68, pages 517–524, New York, NY, USA, 1968.
ACM. doi: 10.1145/800186.810616. URL http://doi.acm.org/10.

1145/800186.810616.

[10] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Saddle connec-
tors - an approach to visualizing the topological skeleton of complex
3d vector fields. In G. Turk, J. J. van Wijk, and R. Moorhead, editors,
Proc. IEEE Visualization 2003, pages 225–232, Seattle, U.S.A., October
2003. URL http://tinoweinkauf.net/.

65

http://www.falstad.com/vector3d/
http://www.falstad.com/vector3d/
http://books.google.de/books?id=5EShlIsf4TQC
http://thomas.lewiner.org/pdfs/vector_field_sibgrapi.pdf
http://thomas.lewiner.org/pdfs/vector_field_sibgrapi.pdf
http://dx.doi.org/10.1109/SIBGRAPI.2009.20
http://doi.acm.org/10.1145/800186.810616
http://doi.acm.org/10.1145/800186.810616
http://tinoweinkauf.net/


66 bibliography

[11] Holger Theisel. Designing 2d vector fields of arbitrary topology.
Comput. Graph. Forum, 21(3):1–10, 2002.

[12] Knud Thomsen. Generalized spiral points: further improve-
ment, February 2005. URL http://sitemason.vanderbilt.edu/page/

hmbADS#spiral. last visited March 17th, 2012.

[13] T. Weinkauf. Krümmungsvisualisierung für 3d-vektorfelder. Master’s
thesis, University of Rostock, Department of Computer Sciences, In-
stitute of Computer Graphics, June 2000. URL http://tinoweinkauf.

net/.

[14] T. Weinkauf. Extraction of Topological Structures in 2D and 3D Vec-
tor Fields. PhD thesis, University Magdeburg, 2008. URL http:

//tinoweinkauf.net/.

[15] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Topologi-
cal construction and visualization of higher order 3D vector fields.
Computer Graphics Forum, 23(3):469–478, September 2004. URL http:

//tinoweinkauf.net/. Eurographics 2004, Grenoble, France, August
30 - September 03.

[16] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Boundary
switch connectors for topological visualization of complex 3d vector
fields. Data Visualization 2004, 04:0, 2004.

[17] D. V. Widder. Chapter i introduction. In D.V. Widder, editor, The
Heat Equation, volume 67 of Pure and Applied Mathematics, pages 1 – 16.
Elsevier, 1975. doi: 10.1016/S0079-8169(08)62165-0. URL http://www.

sciencedirect.com/science/article/pii/S0079816908621650.

http://sitemason.vanderbilt.edu/page/hmbADS#spiral
http://sitemason.vanderbilt.edu/page/hmbADS#spiral
http://tinoweinkauf.net/
http://tinoweinkauf.net/
http://tinoweinkauf.net/
http://tinoweinkauf.net/
http://tinoweinkauf.net/
http://tinoweinkauf.net/
http://www.sciencedirect.com/science/article/pii/S0079816908621650
http://www.sciencedirect.com/science/article/pii/S0079816908621650


colophon

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Palatino and
Euler type faces (Type 1 PostScript fonts URW Palladio L and FPL were used).
The listings are typeset in Bera Mono, originally developed by Bitstream,
Inc. as “Bitstream Vera”. (Type 1 PostScript fonts were made available by
Malte Rosenau and Ulrich Dirr.)

The typographic style was inspired by Bringhurst’s genius as presented
in The Elements of Typographic Style [1]. It is available for LATEX via CTAN as
“classicthesis”.

Final Version as of April 10, 2012 at 11:32.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/




S E L B S T S T Ä N D I G K E I T S E R K L Ä R U N G

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur
mit erlaubten Hilfsmitteln angefertigt habe.

Magdeburg, 10. April 2012

Alexander Schulze


	Abstract
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Tasks

	2 Related Work
	2.1 2D Construction
	2.2 3D Construction
	2.3 2D Reconstruction as Approximation
	2.4 2D and 3D Reconstruction with Support Vectors Learning
	2.5 Conclusion

	3 Theory
	3.1 Basic Notations
	3.2 Vector Fields and Their Topological Structures
	3.2.1 Critical Points
	3.2.2 Boundary Switch Curves
	3.2.3 Separatrices and Saddle Connectors

	3.3 Classification of the reconstruction
	3.3.1 Global vs. Local
	3.3.2 Interpolation vs. Approximation
	3.3.3 Conclusion

	3.4 Interpolation
	3.4.1 Inverse distance weighted interpolation
	3.4.2 Trilinear Interpolation
	3.4.3 Reverse Trilinear Interpolation
	3.4.4 Reverse Interpolation from Critical Points


	4 Global Reconstruction of Vector Fields
	4.1 One Sink and One Source
	4.2 Reconstruction with Critical Points
	4.3 Reconstruction with Boundary Switch Curves
	4.4 Parameters
	4.5 Conclusion

	5 Local Reconstruction of Vector Fields
	5.1 Preconditions and Input
	5.2 One Sink and One Source in One Cell
	5.3 General Approach
	5.4 Reconstruction of Cells with Topology
	5.5 Reconstruction of Separation Lines
	5.6 Diffusion of Vector Information
	5.7 Conclusion

	6 Implementation of a Prototype
	6.1 Used Software
	6.2 Implemented Features
	6.2.1 Algorithms and Reconstruction
	6.2.2 Visualisation
	6.2.3 Input and Output

	6.3 Prototype
	6.4 Results

	7 Evaluation of The Results
	7.1 Introduction and Expectations
	7.2 Global Reconstruction
	7.2.1 Test data
	7.2.2 Results for the GCS data set
	7.2.3 Results for the VRTD data set
	7.2.4 Parameters and Runtime

	7.3 Local Reconstruction
	7.3.1 Test data
	7.3.2 Results for the 5CP data set
	7.3.3 Results for the Perlin data set


	8 Conclusion
	8.1 Summary of The Results
	8.2 Interpretation and Comparison
	8.3 Limitations and Perspectives

	A Appendix
	A.1 Distribute points equally on sphere surface
	A.2 Equations

	Bibliography
	Colophon

