
Universitaet Duisburg-Essen
Fakultaet fuer Ingenieurwissenschaften

Lehrstuhl fuer Automatisierungstechnik und Komplexe Systeme

Feature Preserving Up- and Downsampling based on
Neural Networks

Merkmalserhaltendes Up- und Downsampling von
2D-Skalarfeldern basierend auf neuronalen

Netzwerken

Masterarbeit

Desaraju, Seeta Rama Aditya
Matr.-Nr.: 3027926

Erstpruefer Prof. Dr.-Ing. Steven X. Ding
Zweitpruefer Prof. Dr.-Ing. Dirk Soeffker
Betreuer Prov.-Doz. Dr.-Ing. habil. Dirk Joachim Lehmann

[IAV GmbH]

March 16, 2020

Abstract

Single Image Super Resolution (SISR) [11] is a topic widely sought for as it allows
for upscaling of Low Resolution (LR) images to High Resolution (HR) images. This
when successfully achieved can be applied to tasks ranging from but not exclusive
to upscaling medical imagery for better detection of illness, improving on security
footage and classification from LR images. Though Deep Learning (DL) has been
researched for a while, SISR with its ample possible applications is still a relatively
new area of research which was only delved into for a little over a decade. The
availability of raw digital data and lack of computational power played were major
factors at reducing its research. Now with the availability of high computational
power and astounding amounts of raw unstructured data on the internet, the re-
search in SISR rapidly exploded. Starting with the pioneering work of Dong et
al. [11] with the model SRCNN, the quality of images produced by upscaling models
shot up. And with the introduction of Generative Adversarial Networks (GAN) to
the field of Super Resolution (SR), the perceptual quality leapt further forward.
Downscaling or downsampling of an image is often overlooked even with it being

one of the most used image processing operation. This thesis is an extensive quan-
titative study of behavioural changes during the training and the changes in the
effective performance of ERCA [19], SRGAN [32] and SRFeat [42] depending on the
domain specificity of the datasets. Further the influence of adaptive downsampling
approaches, like the perceptually based downscaling [41] and detail preserving im-
age downscaling [57], on the performance of the upsampling models is studied and
quantified. The results are quantitatively compared and by doing this draw upon
the behavioural differences in the chosen models based on the training datasets and
also show how each of the selected downsampling methods can potentially increase
the performance of the current state-of-the-art models.

Acknowledgement

I would like to extend my sincere gratitude for the guidance of Prof. Dr.-Ing. Steven
X. Ding [AKS], Prof. Dr.-Ing. Dirk Soeffker [SRS] and Prov.-Doz. Dr.-Ing.habil.
Dirk Joachim Lehmann [IAV GmbH] and the opportunity to do my Master thesis at
IAV GmbH in collaboration with the Institute of Automatic Control and Complex
Systems, University of Duisburg Essen. It was because of them and the support from
Dr.-Ing. Chris Louen[AKS] that I overcame all challenges in this work. I also am
deeply grateful for the professors and asst. professors at the University of Duisburg
Essen without whose teachings, I would not have achieved my current state. I am
also very thankful for the valuable suggestions and support from the colleagues in
the Vision Team, TM-R13.
I am thankful for everything I have learnt during the time that I worked at IAV

GmbH and the experience I have gathered. Owing to all these pieces falling where
they should, I have been able to successfully complete my thesis.

Contents

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Task Description . 1
1.2 Motivation . 1
1.3 Structure of the Thesis . 2

2 Fundamentals 3
2.1 Neural Networks . 4

2.1.1 Logistic Regression . 5
2.1.2 Gradient Descent . 6
2.1.3 Forward Propagation . 7
2.1.4 Back Propagation . 7
2.1.5 Vectorization . 8
2.1.6 Activation Functions . 8

2.2 Deep L-Layer Neural Network . 9
2.3 Convolutional Neural Networks . 10

2.3.1 General Convolution . 11
2.3.2 Padded Convolution . 11
2.3.3 Strided Convolution . 12
2.3.4 Pooling Layers . 12
2.3.5 Convolution over 3D Volumes 13

2.3.5.1 General 3D Convolution 13
2.3.5.2 Multi-Layer 3D Convolution 14

2.3.6 Advantages of a CNN . 14
2.4 Residual Networks . 15
2.5 Introduction to Generative Adversarial Networks 15

Contents

2.6 Transfer Learning . 16
2.7 Resampling / Rescaling . 17

2.7.1 Image Resolution . 18
2.7.2 Upsampling . 18
2.7.3 Downsampling . 19

3 Related Work / State of the Art 20
3.1 Interpolation Approaches . 20

3.1.1 Nearest Neighbour . 21
3.1.2 Bi-linear . 22
3.1.3 Bi-cubic . 23
3.1.4 Lanczos . 24

3.2 Deep Learning based Upsampling Approaches 25
3.2.1 Convolutional Network Approaches 25
3.2.2 Residual Network Approaches 26

3.3 GAN Based Super Resolution Approaches 29
3.3.1 SRGAN . 29
3.3.2 ESRGAN . 30
3.3.3 SRFeat . 31
3.3.4 ERCA . 32

3.4 Advanced Downsampling Approaches 33
3.4.1 Content-Adaptive Image Downscaling 33
3.4.2 Perceptually Based Downscaling of Images 34
3.4.3 Rapid, Detail-Preserving Image Downscaling 35
3.4.4 Comparing Downsampling Approaches 36

4 Implementation 38
4.1 Upsampling . 38

4.1.1 Hardware . 39
4.1.2 Training Datasets . 39
4.1.3 Pre-Training Phase for selected Generators 39
4.1.4 Adversarial Training Phase . 40

4.1.4.1 SRGAN . 41
4.1.4.2 SRFeat . 41
4.1.4.3 ERCA . 42

4.2 Downsampling . 42

5 Evaluation 44
5.1 Benchmark Test Sets . 44
5.2 Metrics . 45
5.3 Evaluation of Upsampling Models . 46

5.3.1 Set5 . 46
5.3.2 Set14 . 47
5.3.3 Oregon Wildlife Dataset . 47

vi

Contents

5.3.4 Subsets of Stanford Cars Dataset 48
5.3.5 Sample Image Sets from Upsampling 49
5.3.6 Observations from the Study of Upsampling Models 50

5.4 Upsampling specific Evaluation of Downsampling Methods 51
5.4.1 Generators Pre-trained on DIV2K 52
5.4.2 Generators Trained on Flickr1024 52
5.4.3 Generators Trained on Oregon Wildlife Dataset 53
5.4.4 Generators Trained on Stanford Cars Dataset 54
5.4.5 Sample Image Set for Upsampling specific Downsampling . . . 55
5.4.6 Observations from the Evaluation of Downsampling Methods . 56

6 Discussion 57
6.1 Results . 57
6.2 Achievements . 58
6.3 Drawbacks . 58

7 Conclusion and Future Work 59

Bibliography 60

vii

List of Figures

2.1 Basic neural network architecture [60] 4
2.2 Gradient descent with local and global minima [44] 6
2.3 Basic convolution operation [52] . 10
2.4 Padded convolution with p = 1, no stride [6] 11
2.5 Strided convolution with p = 1, s = 2 [4] 12
2.6 A simple pooling [45] operation with s = 2, f = 2 12
2.7 Convolution over RGB data using a 3D kernel [1] 13
2.8 A residual block with a skip connection from layer l to layer l + 2 [17] 15
2.9 Generative Adversarial Networks framework [16] 16
2.10 A simple representation of up- and down-sampling [37] 18

3.1 Example upsampling using interpolation approaches, scaling factor
= 4, source image from [2] . 20

3.2 Example downsampling using interpolation approaches, scaling factor
= 2, source image from [15] . 21

3.3 Nearest neighbour interpolation with a scaling factor of 2 [3] 21
3.4 Bilinear interpolation represented in a 2D pixel plane ABCD 22
3.5 Bicubic interpolation represented in a 2D pixel xy-plane [35] 23
3.6 Lanczos interpolation represented in 1D with two individual Lanczos

kernels with a = 2 shown at x = 4, 11 [5, 13] 24
3.7 Deep super resolution architectures [11] 25
3.8 ESPCN - Sub-pixel convolution layer [46] 26
3.9 Deep super resolution architectures [61], part 1 27
3.10 Deep super resolution architectures [61], part 2 28
3.11 [32] SRGAN - Generator and Discriminator architectures [k9n64s1

for example stands for kernel size = 9, number of channels = 64 and
stride = 1] . 30

3.12 [53] RRDB architecture . 31

List of Figures

3.13 [42] SRFeat architecture with the short and long range skip connec-
tions represented in the Generator network 32

3.14 ERCA [19] generator network architecture with residual channel at-
tention . 33

3.15 [57] Examples of Downsampled Images 37

4.1 Losses during training of SRGAN on stanford cars, oregon wildlife
and flickr1024 datasets . 41

4.2 Losses during training of SRFeat on stanford cars, oregon wildlife and
flickr1024 datasets . 41

4.3 Losses during training of ERCA on stanford cars, oregon wildlife and
flickr1024 datasets . 42

4.4 Downsampled and rescaled crops of the comic image from set14 . . . 42

5.1 Sample image from Set5 [55] upsampled using the pre-trained gener-
ators trained on DIV2K with values represented as PSNR/SSIM/PI . 49

5.2 Sample image from Set5 [55] upsampled using SRGAN trained on all
4 datasets with values represented as PSNR/SSIM/PI 50

5.3 Sample image from Set14 [55] upsampled using ERCA trained on all
4 datasets with values represented as PSNR/SSIM/PI 50

5.4 Sample image from Set14 [55] upsampled from each LR version using
ERCA trained on all 4 datasets . 55

ix

List of Tables

5.1 Table of PSNR and SSIM values for upsampled Set5 images 46
5.2 Table of RMSE and PI values for upsampled Set5 images 47
5.3 Table of PSNR and SSIM values for upsampled Set14 images 47
5.4 Table of RMSE and PI values for upsampled Set14 images 47
5.5 Table of PSNR and SSIM values for upsampled images from subset

of oregon wildlife dataset . 48
5.6 Table of RMSE and PI values for upsampled images from subset of

oregon wildlife dataset . 48
5.7 Table of PSNR and SSIM values for upsampled images from subset

of stanford cars dataset . 48
5.8 Table of RMSE and PI values for upsampled images from subset of

stanford cars dataset . 49
5.9 Table of PSNR and SSIM values for Set14 upsampled from various

LR image versions by models trained on DIV2K dataset 52
5.10 Table of RMSE and PI values for Set14 upsampled from various LR

image versions by models trained on DIV2K dataset 52
5.11 Table of PSNR and SSIM values for for Set14 upsampled from various

LR image versions by models trained on flickr1024 dataset 53
5.12 Table of RMSE and PI values for Set14 upsampled from various LR

image versions by models trained on flickr1024 dataset 53
5.13 Table of PSNR and SSIM values for for Set14 upsampled from various

LR image versions by models trained on oregon wildlife dataset . . . 53
5.14 Table of RMSE and PI values for Set14 upsampled from various LR

image versions by models trained on oregon wildlife dataset 54
5.15 Table of PSNR and SSIM values for for Set14 upsampled from various

LR image versions by models trained on stanford cars dataset 54

List of Tables

5.16 Table of RMSE and PI values for Set14 upsampled from various LR
image versions by models trained on stanford cars dataset 54

xi

CHAPTER 1

Introduction

1.1 Task Description

Image re-sampling is the problem of altering the resolution of the image available
and has two directions of resampling that could be achieved. Image upsampling
commonly referred to as image super resolution (SR) is the problem of reconstructing
an accurate high-resolution (HR) image from its low-resolution (LR) counterpart.
Image downsampling on the other hand is the problem of reducing the available
high-resolution (HR) image to a low-resolution (LR) image.
In this thesis, three super resolution models SRGAN [32], SRFeat [42] and ERCA

[19] are trained under similar conditions on DIV2K [7], flickr1024 [54], oregon wildlife
dataset [40] and stanford cars dataset [28]. The results are then compared against
each other and critiqued. Three downsampling approaches namely the Content-
adaptive downscaling [27], perceptually based downscaling [41] and detail preserv-
ing image downscaling [57] are studied and the influence of two of them on the
performance of the upsampling models is quantified and evaluated.

1.2 Motivation

Since 2014 when the paper by Dong et al. [11] was published, there was a huge leap
in the deep learning community to better the super resolution of the LR images
using CNNs. There was a steady growth in the quality of the images produced
till GAN [16] was published in 2017. The quality of images spiked as a result of
the perceptual superiority of the images generated by these generative adversarial
networks. In SRGAN [32], Christian et al. proposed a perceptual loss which con-
sists of adversarial and content loss to attain a very perceptually pleasing SR image
with a 4× sampling factor. Many models were proposed from then and set new

1 Introduction

standards with time. With an interest in the behavioural differences among up-
sampling models that were proposed there after, the work in this thesis was carried
out. After an intensive review of the current literature available on super resolution,
the models SRGAN [32], SRFeat [42] and ERCA [19] were chosen due to their part
similarity in the neural network architecture. This work includes extensive study
of the influence of domain-specific and multi-domain datasets and their choice on
these models trained under similar conditions and similar training parameters all
the while studying the training behaviour and model performance overall. The per-
formance of the models on benchmark data sets for super resolution are quantified
using PSNR, SSIM [56], RMSE and PI [8](Perceptual Index) . This thesis also con-
tains a comparative study of two adaptive down sampling methods, the perceptually
based down-scaling [41] and detail preserving image downscaling [57]. Further the
influence of these downsampling methods if they were to be used to generate the
LR images that are to be fed as inputs to any upsampling methods on the SR im-
age quality is extensively studied. Any inference could potentially be directed to
the training process as the change in the downsampling method for images while
making the LR images during the pre-processing phase could also alter accordingly.

1.3 Structure of the Thesis

A brief introduction is given on the thesis in chapter 1. Chapter 2 explains the fun-
damentals necessary to understand the upsampling and downsampling problems fur-
ther. Chapter 3 gives a brief overview of the conventional interpolation approaches
followed by the deep learning based approaches for upsampling and adaptive down-
sampling methods. Chapter 4 describes my implementation, the training methods
used, the datasets used to train the models and the method for testing the evalua-
tion of downsampling methods. Chapter 5 is the evaluation of my implementation
and a quantitative comparison based on their performance on the benchmark data
sets. The results, the application, the achievement and drawbacks are discussed in
chapter 6 and a descriptive conclusion is presented while mentioning potential future
work in the field in the chapter 7.

2

CHAPTER 2

Fundamentals

Traditionally coding for a task involves the programmer or the user to feed the
data and rules necessary to get the desired solution for the task. Here the data
required is low and so is the computational expense to get the desired solution.
In machine learning on the other hand the desired solution and data are fed to a
model and the model learns the set of rules that would be needed to get the desired
solution. This process is called training a model. A model as a norm in the machine
learning community is used interchangeably with neural network which is a series of
layers. Each layer is a cluster of nodes referred to as neurons and each of the neuron
essentially is a function of the available data input to map it to the output. Each
parameter in the function is initialised by a random value at the beginning of the
training and through a series of iterative steps, the model converges on the values for
every one of the parameters to successfully get to the desired solution. The number
of parameters to train and the data required to train the model is higher depending
on the task that the model needs to solve.
Deep learning is a subset of machine learning and involves more than one layer

of neurons. With the increase in layers, the number of parameters that need to be
trained increases and with it the computational expense. In general the number
of iterations and the data required by the model to undergo successful training is
directly proportional to the depth of the network or model. Any task that deals
with images almost consistently need multiple layers in the model. Deep learning
requires a large amount of data and has a high training time but it has also proven to
show better results. For example, a color (RGB) image with a resolution of 64× 64
comprises of 3 layers (Red, Green and Blue) which amounts to 12, 288 input pixel
values. One neuron would have that many parameters to train and considering a few
neurons in a layer and a few layers, the computational expense skyrockets. Though
machine learning has existed for a really long time, researchers started showing

2 Fundamentals

interest in it for only a little over a decade. The reasons among others were the lack
of computational power, the lack of network speeds and availability of data. Now
though, the computers have high computational power and there is ample amount
of unstructured data available which shot up the use and the importance of deep
learning.

2.1 Neural Networks

A simple neural network as in fig.2.1 consists of three layers, the input layer, a
hidden layer and the output layer. Deep neural networks as in fig.2.1 refer to the
increased number of hidden layers in a network. The connections indicated in fig.2.1
are the computations that are to be performed while training. If all the neurons of
the current layer are connected to the previous layer and the following layer then,
the layer is referred to as a fully connected or a dense layer.

Figure 2.1: Basic neural network architecture [60]

Dense layer is among the core layers and one of the most used layer in the neu-
ral network architectures but the amount of computations are high as each of the
parameters that are to be trained are independent of each other. For image data
where the input data is high, the computations turns excessive. A better alternative
would be to use Convolutional Neural Networks (CNN) explained in section 2.3
Training a neural network refers to the iterative process through which the ma-

chine or rather the model learns to predict the desired output. This learning is
widely classified into ’Supervised Learning’ and ’Unsupervised Learning.’ In super-
vised learning the model is fed with structured data each input containing both the
set of input features (the pixel values for images) and a label (desired output to be
predicted). The model converges on predicting the desired output. In unsupervised
learning the model is fed with unstructured data (for eg.: raw images, audio, text)
and the model learns to extract features and pair them together for similarity. The
idea of training thus far is by nature empirical. The following notation will be used

4

2 Fundamentals

through chapter 2:
x : input feature vector
y : label / output
nw : width of the input image

nh : height of the input image
nc : number of channels, nc = 3 for an RGB image
nx : shape of the input x
m : batch size / number of training examples

For every training set (x, y) and considering a binary classification problem,

nx : nw × nh × nc
x ε Rnx

y ε {0, 1}

For a training set of m training examples,

m training examples :
{(

x(1), y(1)
)
,
(
x(2), y(2)

)
,,

(
x(m), y(m)

)}
X ε R nx×m

X.shape = (nx,m)
Y ε R 1×m

Y.shape = (1,m)

2.1.1 Logistic Regression

The supervised learning in case of a binary classification is carried out by ’Logis-
tic Regression’. ŷ is the probability that y is 1 given the input features, x. The
parameters that are to be learnt during the training process are w and b.

w : weights, w ε R nx

b : bias, b ε R
ŷ : prediction of y, 0 ≤ ŷ ≤ 1
ŷ = p (y = 1 | x)

z = wT ∗ x + b (2.1)
a = ŷ = σ (z) (2.2)

σ (z) = 1
1 + e−z

(2.3)

5

2 Fundamentals

if z >> 0, σ (z) = 1,
if z << 0, σ (z) = 0

On successful training, the model is to learn to predict y accurately, ŷ → y. This is
achieved through minimizing the cost function J which is the cumulative loss over
the m training examples.

J (w, b) = 1
m
∗

m∑
i=1

L
(
ŷ(i), y(i)

)
(2.4)

where L
(
ŷ(i), y(i)

)
is the Loss function for the i-th training example. The parameters

w and b are the values that generate the minimum cost function value J (w, b).

2.1.2 Gradient Descent

Gradient descent is the process of reaching the point where the values of w and b
for the minimum cost function J through progressive reduction. Fig.2.2 visualizes
a simpler graph between the cost function J (w) against w (b is ignored for this
representation for simplicity). The weights are randomly initialized and are updated
through iterations by a small value every iteration to close in on the global cost
minima.

Figure 2.2: Gradient descent with local and global minima [44]

α : learning rate
dw : change in weights for update

For every iteration, the w and b are updated as follows:

w : w− α
(
dJ(w,b)
dw

)
(2.5)

6

2 Fundamentals

b : b− α
(
dJ(w,b)

db

)
(2.6)

2.1.3 Forward Propagation

The forward pass through a computation graph is referred to as forward propagation.
The value of J is calculated from the known initial input w, weights w and bias b.
Consider the simple equation for i-th1 example:

z(i) = x(i)
1 ∗w(i)

1 + x(i)
2 ∗w(i)

2 + b (2.7)
a(i) = ŷ(i) = σ

(
z(i)

)
(2.8)

From the value of a (ŷ) obtained, the value of the loss function is calculated for all
the m training examples per iteration followed by the computation of the cumulative
cost function from 2.4.

2.1.4 Back Propagation

The backward pass through a computation graph is referred to as back propagation.
The relative values of change in Cost function w.r.t.2 the change in each of the input
values and trainable parameters are computed. Considering a simple loss function
for i-th example,

L
(
ŷ(i), y(i)

)
= −

(
y(i) ∗ log ŷ(i) +

(
1− y(i)

)
∗ log

(
1− ŷ(i)

))
(2.9)

If eqns. 2.7, 2.8 and 2.9 3 are the steps in the forward propagation to attain the
loss, the back propagation can be carried by computing the partial derivatives of
the same in the opposite direction.

a(i) = ŷ(i) (2.10)

da(i) =
∂L(i)

(
a(i), y(i)

)
∂a(i) = −y

(i)

a(i) +

(
1− y(i)

)
1− a(i) (2.11)

dz(i) = ∂L(i)

∂z(i) = ∂L(i)

∂a(i) ∗
∂a(i)

∂z(i) = a(i) − y(i) (2.12)

dw
(i)
1 = ∂L(i)

∂w
(i)
1

= x(i)
1 ∗ dz(i) (2.13)

1the number of the example is always represented by (i) inside parenthesis
2w.r.t.: with respect to
3Note: the loss function shown in 2.9 tends to optimize to a local minimum and is referred only
for simplicity. Better loss functions are available for optimal gradient descent.

7

2 Fundamentals

dw
(i)
2 = ∂L(i)

∂w
(i)
2

= x(i)
2 ∗ dz(i) (2.14)

db(i) = dz(i) (2.15)

The back propagation is followed by updating the w and b values using eqn.2.5 and
eqn.2.6 respectively taking the dw and db values. Each such iteration is known as
an epoch. This process is repeated till the global minimum of the cost function is
attained.

2.1.5 Vectorization

To iterate through larger data sets, explicit for loops are less efficient as they do not
allow parallel computing. In deep learning where the amount of data is high, the
for loops are avoided as much as possible to make the training faster. The method
used to achieve this is called vectorization. The vectorized versions of eqn.2.1 and
eqn.2.2 are as follows

Z = WT + b (2.16)
A = σ (Z) (2.17)

where,
Z =

[
z(1), z(2),, z(m)

]
Z.shape = (nx, m)
A =

[
a(1), a(2),, a(m)

]
A.shape = (1, m)

2.1.6 Activation Functions

Till this point the activation function that was being used is sigmoid, σ (z). But
a more generalized representation of the activation function is g (z) where g is a
non-linear function. TanH [43] is one such activation, and is better at activation
in most cases when compared to sigmoid except for binary classification where sig-
moid would be the better choice. Note that with both the TanH [43] and Logistic/
sigmoid activation [43], the neurons with highest or lowest values also known as
saturated neurons kill the gate gradients. In theory though ReLU [43] deactivates
the neuron for z < 0, it has evidently been effective at activating the neurons with
important data. An alternative would be to use Leaky ReLU [43] which allows a
minor activation for z values at 0 or lower. A few of the activation functions are
shown in [43].
The following is the representation that will be followed through the following

chapters for the derivative of the non linear activation or the slope of g wrt z.
Consider the sigmoid function from eqn.2.3,

8

2 Fundamentals

g (z) = a = σ (z) (2.18)

g′(z) = d g (z)
dz

(2.19)

g′(z) = g(z) ∗ (1− g(z))⇒ a ∗ (1− a) (2.20)

2.2 Deep L-Layer Neural Network

Neural networks with more than one hidden layers are known as deep neural net-
works. Here we consider the neural network to have L layers. The additional
notations for deep neural networks are,

L : total number of layers excluding the input layer
l : number of the current layer4

n[l] : number of units / neurons in the layer l

The generalized vectorized equations for forward and back projection from 2.1.3 and
2.1.4 are rewritten as follows,

Vectorized Forward Propagation for Layer l

Z[l] = W[l] ∗A[l−1] + b[l] (2.21)
A[l] = g[l]

(
Z[l]

)
(2.22)

at l = 0, A[0] = X

Vectorized Back Propagation for Layer l

dZ[l] = dA[l] ∗ g[l]′
(
Z[l]

)
(2.23)

dW[l] = 1
m
∗ dZ[l] ∗A[l−1]T (2.24)

db[l] = 1
m
∗
l=L∑
l=1

dZ[l] (2.25)

dA[l−1] = W[l]T ∗ dZ[l] (2.26)

Update Weights and Bias

4n[l]: The number in the square brackets as a superscript indicates the current layer

9

2 Fundamentals

W[l] = W[l] − α ∗ dW[l] (2.27)
b[l] = b[l] − α ∗ db[l] (2.28)

Matrix Dimensions

W[l], dW[l] =
(
n[l], n[l−1]

)
X =

(
n[0],m

)
b[l] =

(
n[l],m

)
Z[l],A[l], dZ[l], dA[l] =

(
n[l],m

)

2.3 Convolutional Neural Networks

The process of overlapping a kernel in steps over the range of input data to extract
low dimensional features is convolution. A kernel or a filter is an array of values and
is one of the base components of a convolution operation. Like shown in fig. 2.3, a
dot product of the section of the input data and the kernel is the resultant value in
the associated block in the convoluted feature or the feature map. Conventionally,
the size of the filter, f is odd and almost never even. Some of the classic CNN
architechtures are LeNet-5 [31], AlexNet [29] and VGG-16 [47].

Figure 2.3: Basic convolution operation [52]

The notations to be followed through this section are,

n : number of pixels in input image
nw : width of the input image
nh : height of the input image
f : filter / kernelsize
p : padding
s : stride
nc : number of channels

10

2 Fundamentals

∗ : convolution operation

2.3.1 General Convolution

The change in dimension on performing a convolution operation between the input
data and the feature map.

[n× n] ∗ [f × f]→ [(n− f + 1)× (n− f + 1)] (2.29)

2.3.2 Padded Convolution

Figure 2.4: Padded convolution with p = 1, no stride [6]

Fig. 2.4 shows the steps of a padded convolution with no stride. The change
in dimension on performing a convolution operation with a padding p between the
input data and the feature map.

[(n+ (2 ∗ p))× (n+ (2 ∗ p))] ∗ [f × f]→ [(n+ (2 ∗ p)− f + 1)× (n+ (2 ∗ p)− f + 1)]
(2.30)

There are two types of padding methods used, ’valid’ and ’same’. In ’valid’, the
padding is set to 0 and is similar to 2.29. in ’same’, the padding is set so that the
output size is same as the input size.

p = f − 1
2 (2.31)

11

2 Fundamentals

2.3.3 Strided Convolution

The change in dimension on performing a convolution operation with a padding p
and stride s between the input data and the feature map.

[(n+ (2 ∗ p))× (n+ (2 ∗ p))] ∗ [f × f]→
[⌊
n− (2 ∗ p) + f

s
+ 1

⌋
×
⌊
n− (2 ∗ p) + f

s
+ 1

⌋]
(2.32)

Figure 2.5: Strided convolution with p = 1, s = 2 [4]

Fig. 2.5 shows the steps of a strided convolution with 1 pixel padding and 2 pixel
stride. Note that if the value of n−(2∗p)+f

s
is not an integer then it is rounded to its

closest integer.

2.3.4 Pooling Layers

Figure 2.6: A simple pooling [45] operation with s = 2, f = 2

If the 4×4 image matrix in fig. 2.6 is the representation of features detected from
a previous layer and the size of the filter is 2×2 then the output as shown on the right
of fig. 2.6 is by eqn.2.32 of size 2× 2. The max pooling [45] operation preserves the
strongest feature that was detected. The pooling operation is performed over each
channel independently. Padding is commonly set to 0. While there is loss of data,
pooling helps in condensing the data while preserving important features. There are
no additional training parameters that are there in a pooling layer. The filter size,

12

2 Fundamentals

stride, padding and the type of pooling (eg. Max Pooling, Average Pooling etc.) are
variable and are set before training. These are referred to as hyper parameters.

2.3.5 Convolution over 3D Volumes

In the case of image data, the convolutions are to be carried in 3 dimensions. The
width, the height and the number of channels. In 2.7, an image with RGB channels
is represented on the left, the size of the input data shown in fig.2.7 is 6 × 6 × 3,
the three-dimensional kernel is represented by 3 layers of 2-dimensional filters and
the size of each of the 3D kernel shown in fig.2.7 is 3 × 3 × 3. The convolutional
operation is done to all three layers in the input data at the same time to compute
one value in the output feature map. The RGB dots on the feature map on the
right denote a value from the corresponding layer and not the color itself. Note
that, for an RGB image, the number of channels in the input data and the number
of channels of the filter must be the same. One filter is used to detect one feature
from the image like an edge, a corner or a pattern. If multiple features are to be
detected, multiple filters need to be used. the size of the filter stays the same in a
layer. As shown in fig.2.7, the data convolved using each filter forms one layer or
channel of feature map. The number of filters in the layer is equal to the number of
channels in the output feature map.

Figure 2.7: Convolution over RGB data using a 3D kernel [1]

2.3.5.1 General 3D Convolution

The general notation and the representation of the dimensions in a convolutional
layer with multiple filters is as follows

n′c : number of channels in the output feature map

[n× n× nc] ∗ [f × f × nc]→ [(n− f + 1)× (n− f + 1)× nc′] (2.33)

13

2 Fundamentals

The trainable parameters in a convolutional layer are the weights in each filter and
one bias per filter. In fig.2.7 the number of parameters would be 3× 3× 3 per filter,
that is 54 and 2 biases, one per filter which amounts to 56 trainable parameters.

2.3.5.2 Multi-Layer 3D Convolution

Following the same notation earlier where super-scripted [l] represents the number
of the current layer, the general notation and dimensions for a multi layered convo-
lutional layer would be as follows

f[l] : filter size
p[l] : padding
s[l] : stride
n[l]
c : number of filters in layer l
n[l−1]
c : number of channels in layer l − 1

w[l] : weights for layer l
a[l] : activation
m : batch size
A[l] : a[l] vectorized over m

n
[l]
h =

⌊
nl−1
h

+(2∗p[l])−f [l]

s[l] + 1
⌋

n
[l]
w =

⌊
nl−1
w +(2∗p[l])−f [l]

s[l] + 1
⌋

input, a[l−1] = n
[l−1]
h × n[l−1]

w × n[l−1]
c

size of each filter = f [l] × f [l] × n[l−1]
c

w[l] = f [l] × f [l] × n[l−1]
c × n[l]

c

b[l] = 1× 1× 1× n[l]
c

A[l] = m× n[l]
h × n[l]

w × n[l]
c

output, a[l] = n
[l−1]
h × n[l−1]

w × n[l−1]
c

2.3.6 Advantages of a CNN

The following are some of the advantages of a CNN

• One of the main advantages of using a Convolutional Neural Network in com-
parison to traditional fully connected network is parameter sharing. A feature
detector or a filter that is useful in one part of the image, can also detect
similar features in the other parts of the image.

14

2 Fundamentals

• The sparcity of connections between the input and output feature map. Each
value in output feature is connected or depends on a small set of values from
the input matrix depending on the size of the filter used.

• CNNs are good at tracing translation and or variance in an image. The object
of interest positioned at the left half of the pixels or right would be treated
the same way as a collective features is what the convolutional layer tries to
learn. For eg., A cat at the left of an image or the right of an image would
still be recognised as a cat by an image classifier.

2.4 Residual Networks

The networks were growing deeper through time since the deep learning took off but
the deeper the network was, the tougher it was to achieve network identity. The
Neural Network structures all being black box architectures in which nothing that is
computed during training is available but the output itself. There was a subsequent
loss of data. In 2016 He et al. in [17] introduced the residual blocks, example shown
in fig.2.8 where in they trained a 152 layer neural network with skip connections.

Figure 2.8: A residual block with a skip connection from layer l to layer l + 2 [17]

These skip connections carried the activation information from a few layers prior
to the current layer to the current layer. The padding across the network was
maintained as ’same’(see section 2.3.4) which would facilitate easier matrix addition
owing to retained dimensions.

2.5 Introduction to Generative Adversarial Networks

A neural network is capable of learning, given the right answer as label during
training. The network on successful training becomes capable of producing the
answer, given input data in the same domain. Creating new data was not something
the networks were capable of doing. In 2014, Ian Goodfellow et al. proposed a
framework to train a network to generate new data (in the same domain as the
training set) called Generative Adversarial Networks [16]. The framework as seen

15

2 Fundamentals

in fig.2.9 consists of two separate networks namely the generator and discriminator
acting as adversaries during the training process.

Figure 2.9: Generative Adversarial Networks framework [16]

Given a sample from real data x and a sample from generated data x̂, the task
of the discriminator is to check if the generated data is from the same domain
as the real data. In other words, the discriminator checks if the generated data
is real or fake. Given random noise z generated in a latent space, the task of the
generator is to map z to x̂. Discriminator, typically a classifier [16], outputs the error
between the real and generated data. The cost function associated to that error is
minimized using gradient descent during the back propagation step. As the training
progresses, the generator learns to generate data closer to the domain of the real
data and the discriminator learns to better distinguish between real and generated
data. Theoretically, the ideal that can be achieved would be for the generator to
learn to generate data that can not be distinguished by the discriminator from the
real data. But, in practice, the discriminator usually trumps the generator and the
training is stopped at a point when the data generated resembles the real data.
Once the training is completed, the discriminator is discarded and the generator is
used to generate data that resembles the real data, given random noise in the latent
space. Though GAN improved the perceptual quality, the training itself is fairly
unstable owing to issues including but not exclusive to vanishing gradient and mode
collapse.

2.6 Transfer Learning

Transfer learning is the process with which a trained network model can be trained
further to better fit the domain of the task. In general the process involves down-
loading the architecture and its pre-trained weights from an open source implemen-

16

2 Fundamentals

tation. Because some of the available models have been trained on large data sets,
they would work better than a model trained from the scratch on a small data set.
It is almost always recommended to check if the task can be optimally handled by
pre-existing trained networks by transfer learning to save time and computational
expense. Weiss et al. in [58] go through a survey of transfer learning approaches,
brief description of which is given hereafter.

• Based on how different the task at hand is from what the model was previously
trained for [58], the number of layers that need to be re-implemented is decided.
For eg., if the model was trained to classify 47 objects and the user only needs
4 classes, then just the last softmax layer needs to be re-implemented and if
the model was trained to classify objects and the user needs to localize the
object in the image, then a few layers from the top including the softmax layer
need to be re-implemented. The layers that can use the weights from the pre-
trained models are set to non-trainable (frozen), which allows for the network
to only train the layers following.

• Depending on how much data is available, the number of layers that can be
set to non-trainable [58] can be chosen. For lower amounts of data, the model
might learn little to nothing if too many layers are trainable. The number
of layers that can learn successfully is directly proportional to the amount of
data fed to the network during training.

• Depending on how much computational power one has at their disposal, the
amount of data needs to be set, so as to manage the time the model would need
to train [58]. Theoretically if there is a high amount of data, ample time and a
lot of computational power available, then the model can be trained from the
scratch. If the computational power available is pretty high and the data set
is pretty large, then the weights of the network can also be initialized with the
pre-trained weights instead of randomly initializing them (this is the standard
process) and weights of all the layers can be set as trainable parameters.

2.7 Resampling / Rescaling

An image is represented as a grid of fixed size block elements. Each such element is
called a pixel. An image is represented as an array of pixel intensity values. Image
re-sampling is the process of altering the image resolution with the help of available
sampling methods which are categorized by the sampling factor value being greater
or lesser than 1. 2.10 shows a simple representation of up- and downsampling of a
grid of pixels.

17

2 Fundamentals

Figure 2.10: A simple representation of up- and down-sampling [37]

2.7.1 Image Resolution

There are three broad representations of image resolutions.

• Pixel Count Resolution: It is a simple representation of the amount of
pixels a digital image. The number of pixels in the width of the image times
the number of pixels in the height of the image, commonly referred to as ’image
resolution’. These values remain constant unless the image is re-sampled or
cropped.

• Spatial Resolution: This is a representation of pixels per inch on a display.
An image of nw×nh can be displayed on a screen bigger than the image (A high
definition monitor or a TV) or a screen smaller than the image (a mobile or a
digital camera screen). The term "dpi" (dots per squared inch) is also highly
used to represent the pixels per inch. Spatial resolution is not a fixed property
till the image takes a permanent physical form, for example, in Printing or on
screens.

• Temporal Resolution: This is the representation of an image in terms of a
time. For example, if a scene is captured everyday then the temporal resolution
of the scene would be one day. Note that this topic is out of scope for this thesis
and for information regarding the temporal resolution, refer to the section
6.07.2.1.3 in [33]

2.7.2 Upsampling

If the sampling factor is greater than 1, then the process is called upsampling or
super-sampling. The intuition of upsampling is to insert additional blank pixel rows
and columns next to the existing ones and filling these pixels with values computed
using the existing values surrounding them. For image data, upsampling is also
commonly referred to as upscaling. This computation can be done using various
interpolation approaches and using neural networks which will be discussed in chap-
ter 3. Since the added pixel values do not originally exist and are computed, there

18

2 Fundamentals

can be a large number of possible solutions and the output of the said approaches is
one such possible solution. The problem to solve here is to produce an upsampled
approximate of the original image while preserving or improving the sharpness and
details.

2.7.3 Downsampling

If the sampling factor is lesser than 1, then the process is called downsampling or
sub-sampling. The intuition of downsampling is to reduce the number of pixels
while trying to preserve as much feature information as possible. For image data,
downsampling is commonly referred to as downscaling [27]. The non-adaptive and
adaptive interpolation approaches for downsampling will be discussed further in
chapter 3. Since the output is the data after strategically eliminating data that the
approach deems less important. There is a definite loss of data and the problem
to solve here is to produce a downsampled approximate of the original image while
preserving how the image is perceived by a human eye or the perceptual quality
of the image by reducing the loss of important features as much as possible. As a
result, the output image has lesser storage size while retaining most of its defining
features.

19

CHAPTER 3

Related Work / State of the Art

In this chapter, a brief description of the available upsampling and down-sampling
approaches is given. The standard approaches common to both up- and down-
sampling are introduced in section 3.1 followed by more advanced ML (Machine
Learning) based upsampling approaches in section 3.2 and the adaptive image down-
sampling approaches in section 3.4.

3.1 Interpolation Approaches

A comprehensive study of the interpolation methods and the kernels used to achieve
them are given in [14]. This section contains a brief introduction to the standard
interpolation approaches from [14].

Figure 3.1: Example upsampling using interpolation approaches, scaling factor = 4,
source image from [2]

3 Related Work / State of the Art

Figure 3.2: Example downsampling using interpolation approaches, scaling factor = 2,
source image from [15]

1

Interpolation is the problem of inferring a continuous function from a discrete set
of values and there are many techniques that surfaced over the years. Meijering et al.
in [38] gives a brief chronological history of interpolation techniques. In fig.3.1 and
fig.3.2 is up-sampled by a factor of 4 and down-sampled by a factor of 2 respectively.
Following are the standard interpolation methods used to date.

3.1.1 Nearest Neighbour

This is a non-adaptive interpolation method where the blank pixels added for up-
sampling are filled with the neighbouring pixel values. Since the each pixel value
in this interpolation approach is independent of the pixels around it, the output
up-sampled images are extremely pixelated. This kind of interpolation is good to
preserve sharp edges but in a general application, the edges are sharper than they
need to be as it fails to preserve the softer curves. In fig.3.3 the image is to be
up-sampled by a factor of 2 and the values of each of the pixels is replicated in its
neighbouring pixel positions.

Figure 3.3: Nearest neighbour interpolation with a scaling factor of 2 [3]

1Note that the spatial resolution of the images has been altered to fit the size of the paper without
using any interpolation

21

3 Related Work / State of the Art

3.1.2 Bi-linear

In a linear interpolation, the weighted sum of the source pixel values is used to
fill a new pixel. The weight in linear interpolation is dependent on the respective
distance between the source and the new pixel. The closer the source is to the new
value, the higher the weight associated with that value. A 1D linear interpolation
is the weighted sum of 2 pixel values. A 2D linear interpolation by extension is the
weighted sum of 4 pixel values.

Figure 3.4: Bilinear interpolation represented in a 2D pixel plane ABCD

In fig.3.4 the red dots are the available intensity values of pixels A, B, C and
D. The blue lines between A, B and C, D represent the linear interpolation in x-
direction to estimate the intermediate pixel values y1 and y2. The pixel value y3
between these points can be estimated along the green line y1y2. If y1 and y2 are
the pixel values, length of y1y2 = 1 and y1y3 and y3y2 are the distances from y1 and
y2 to y3 respectively, then

y3 = y1 (1− y1y3) + y2 (1− y3y2) (3.1)

where (1− y1y3) and (1− y3y2) are the weights associated with y1 and y3 respec-
tively. In a general representation where x is the pixel distance between the source
and the resultant pixel, for bilinear interpolation, the weight is given by 1− |x|.
Downsampling using bilinear interpolation uses the same method. For intuition,

the resulting new pixels interpolated from 4 source pixels are concatenated together
and the source pixels are discarded to create the new image per step, thereby re-
ducing 1 row and 1 column of pixels.

22

3 Related Work / State of the Art

3.1.3 Bi-cubic

While a 1D linear interpolation is dependent on 2 pixel values and determining
the values in between those values along the line. A 1D cubic interpolation is
dependent on 4 pixel values. The intensity gradients between source pixel values are
considered and hence, to draw a gradient at an intensity value, the two source pixels
following the current would be needed. Considering p0, p1, p2, p3 to be the source
pixel intensity values, the continuous function drawn between them, a cubic spline
can be represented by y in eqn.3.2 where a0, a1, a2, a3 are the weights associated to
the pixel values.

y = a0.p0 + a1.p1 + a2.p2 + a3.p3 (3.2)

A general representation of eqn.3.2 would be

f (x) =
i=3∑
i=0

ai.xi (3.3)

For Bicubic interpolation (2D) [23], a window of 16 pixel values is used. In
fig.3.5, the intensity values are represented by the black dots, the 1D and 2D cubic
interpolations are represented by bold black and red splines respectively.

Figure 3.5: Bicubic interpolation represented in a 2D pixel xy-plane [35]

By extension eqn.3.3 for 2D space, the general representation for bicubic can be
written as

f (x, y) =
i=3,j=3∑
i=0,j=0

ai,j.xi.yj (3.4)

23

3 Related Work / State of the Art

3.1.4 Lanczos

Lanczos interpolation is done using a windowed sinc function. A normalized sinc
function is given in [13] by

sinc (x) = sin (πx)
πx

, x 6= 0 (3.5)

If the considered filter size parameter is a positive integer, a then the size of the
the Lanczos reconstruction kernel or the Lanczos kernel is 2a− 1 is given from [13]
by

1 if x = 0

L (x) =
{

a.sin(π.x).sin(π.xa)
π2.x2 if − a ≤ x < a and x 6= 0

0 otherwise

This kernel determines the weights assigned to each of the source pixel intensity
values. In the python package "open cv" (cv2) the Lanczos kernel available is with
a = 4 which implies that the kernel size is 8× 8.

Figure 3.6: Lanczos interpolation represented in 1D with two individual Lanczos kernels
with a = 2 shown at x = 4, 11 [5, 13]

Fig.3.6 shows the Lanczos interpolation shown by the blue spline formed from the
discrete set of pixel values represented by the black points. For 2D, at a = 2, 4
splines as in fig.3.6 would be needed across the second dimension. Lanczos kernel
in 2D [13] can by extension of 3.6 be given by

L (x, y) = L (x)L (y) (3.6)

24

3 Related Work / State of the Art

3.2 Deep Learning based Upsampling Approaches
2 As back-propagation algorithm was introduced to the computer vision field in [30]
and showed promise, the super resolution researchers took interest in its merits in
this field. The evolution of the super resolution algorithms over the next few decades
is noteworthy and an integral part of this study. The improvement shown in the
computational power of the hardware developed during this time was exponential
and the training of the models for super resolution was hence made possible. In
the next few sections, a comprehensive overview of the said literature is given. An
extensive analysis on different models could be found in [15]. As this thesis involves
an extensive study of GANs, the chapters following would show experimental eval-
uation of selected models. The sec 3.3 will describe the architecture, loss functions
and assessment criterion used in respective papers. Figures 3.9 and 3.10 show the
architectures of the models that will be discussed in the sections 3.2.1 and 3.2.2.

3.2.1 Convolutional Network Approaches

Figure 3.7: Deep super resolution architectures [11]

In 2014, the first image super resolution CNN, the SRCNN [11] for the task of SISR
(Single Image Super Resolution) was proposed which was a three layered network
as shown in fig.3.7 consisting of three convolutional layers with 64 filters of 9 × 9,
32 filters of 5 × 5 and 32 filters of 5 × 5 kernel sizes respectively. It was optimized
with MSE (mean square error) as its loss function. Though relatively simple in its
architecture, with its non-linear mapping and reconstruction proved superior to the
methods existing for SISR up untill then. The input given to the SRCNN model
was a bicubically interpolated HR image and not the LR counterpart. FSRCNN

2Note: This section gives a brief overview of the relevant literature and for further details on the
models the readers may refer to the respective citations.

25

3 Related Work / State of the Art

[12] implemented a deconvolutional layer [62] for adaptive upsampling and could
reconstruct HR images from an LR input. The deconvolutional layer required less
computation as this computation was done at the end of the network to reconstruct
the HR image but the layer itself used the nearest neighbour interpolation convolved
with a filter to achieve the HR feature map which had effect on the final performance
as the upsampled features are repeated in all directions as described in the section
3.1.1. Shi et al. proposed a method to deal with the problem caused by using a
deconvolutional layer with efficient sub-pixel convolution neural network (ESPCN).
In ESPCN [46], rather than explicitly upsampling the feature maps like in nearest
neighbour, the layer employs the expansion of channels to store the extra data and
rearranges them to form the HR feature map using a specific mapping method as
seen in fig.3.8

Figure 3.8: ESPCN - Sub-pixel convolution layer [46]

While ESPCN tries to solve the fact that SRCNN takes in an interpolated approx-
imation as an input, VDSR [25] improved the performance using a deeper VGG-
net [47]. VGG sets all convolutional kernels to the size 3 × 3. Kim et al. while
following the same input as SRCNN, in VDSR use a 20-layer VGG network as
shown in fig. 3.9(a) and train it using learning rate decay3 for faster convergence.
Further Kim et. al proposed DRCN [26] where in the inference or the non-linear
mapping part which was recursive for 19 times in VDSR was reduced to 16 as shown
in fig.3.10(b) to lower the trainable parameters. Also, a multi-supervised strategy
is applied which creates shorter paths for the gradient to flow smoothly.

3.2.2 Residual Network Approaches

VGG-net is a plain architecture with no skip connections and thus to train a deeper
version of similar network would be harder. As such the residual networks which
employed skip connections to efficiently reduce the loss of data, most represented in
ResNet [17] were used by the authors of [32]4 to propose SRResNet. Extensive anal-

3learning rate decay: Using a higher learning rate initially and using gradient clipping, the re-
duction of the learning rate at specific epochs as a function of the epoch to accelerate the
convergence initially and prevent gradient explosion at the end of the training.

4Further discussion on GANs would be in 3

26

3 Related Work / State of the Art

ysis of why the residual networks function are given in [17,18]. SRResNet employs 16
residual blocks with each block using batch normalization [21] as seen in fig.3.9(c) to
stabilize the training. Tai et. al proposed DRRN [49] which rearranged the topology
of the residual blocks to form recursive blocks as shown in fig.3.10(d) and reduced
the parameters further by reusing the parameters in each block recursively.

Figure 3.9: Deep super resolution architectures [61], part 1

EDSR [34] proposed by Lee et al. showed a very steep improvement over the
models proposed before then. The change made most notably to SRResNet is the
removal of batch normalization as seen in fig.3.9(e) from the residual blocks as that
was part of the networks developed for classification problem and since it caused for
the evident unpleasant artifacts in upsampled images and reduces the generalisation
ability [34, 53]. The residual scaling method proposed in [48] is further used to

27

3 Related Work / State of the Art

reduce the difficulties that arise during the training of the employed wider ResNet
in EDSR.

Figure 3.10: Deep super resolution architectures [61], part 2

Inspired by the fact that SISR with different sampling factors are strongly re-
lated, the authors of EDSR, when training the higher sampling factors (for exam-
ple: ×3,×4) initialized the weights from a pre-trained ×2 network. This accelerated
the training process by a huge factor while improving the final performance of the
model. This invoked the implication that the models trained for different sampling
factors shared many intermediate transformations. This idea was further explored
by the authors by building a multi-scale model architecture. The resultant model
MDSR is also proposed in [34]. The non-linear mapping section of the architecture is
shared among different sampling factors as shown in fig.3.9(g). Only the feature ex-
traction section and the sub-pixel convolution section at the end of the architecture
were different. Each update was performed by randomly choosing mini-batches for
×2, ×3 and ×4 and updating the corresponding parts in the sub-pixel convolution

28

3 Related Work / State of the Art

section of the model. In [61], the authors pointed out that, While ResNet focuses
on reusing the features to save computation, DenseNet [20] enables new feature ex-
ploration by skip connections connecting each layer with each of its previous layers
and before each block of layers the information is cached and passed on to the final
reconstruction part of the network. Inspired by DenseNet, SRDenseNet [51] was
proposed by Tong et al., the architecture of which can be seen in fig.3.10(f). Mem-
Net [50] proposed by Tai et al. uses recursive units instead of convolutional layers
inside each residual block and dense connections are added among different blocks.
The architecture can be visualized in fig.3.10(h). The authors of [50] explained
that the local connections in the same block resemble short-term memory and the
connections with previous blocks resemble long-term memory. In [63], Zhang et al.
introduce a residual in residual (RIR) structure with channel attention which al-
lowed learning of high frequency information making it capable of producing higher
quality SR images as quantitatively shown in the paper.
The first line of research which involves most of the aforementioned models are

trained while minimising pixel-wise loss functions such as MSE and works on max-
imising PSNR values which fundamentally disagree with the subjective evaluation of
human observers [32]. There is another line of research focused on attaining higher
perceptual quality of an image and this tends towards GAN based SISR which will
be discussed in the next section.

3.3 GAN Based Super Resolution Approaches

GAN based approaches have evidently generated images with better perceptual
quality. This section consists of a study of four GAN models, the SRGAN [32],
ESRGAN [53], SRFeat [42] and ERCA [19]. The readers may refer to the respective
papers for a detailed description and evaluations done by respective authors.

3.3.1 SRGAN

Christian et al. in 2017 proposed a GAN based Super Resolution network archi-
tecture, the SRGAN [32] which beat the existing quality of images at the point
by a large margin thereby setting a new state-of-the-art benchmark. The authors
proposed SRResNet and SRGAN network architectures and a new perceptual loss
function. SRResNet with the architecture as shown in fig.3.11 is the generator part
of the network. The discriminator consists of 8 convolutional layers with same size
kernels (3× 3) and incremental channels as seen in fig.3.11.

The perceptual loss function proposed by the authors is a weighted sum of a
content loss (lSRX) and an adversarial loss (generative loss) component. The over all
loss lSR was given by

lSR = lSRX + 10−3lSRGen (3.7)

29

3 Related Work / State of the Art

Figure 3.11: [32] SRGAN - Generator and Discriminator architectures [k9n64s1 for ex-
ample stands for kernel size = 9, number of channels = 64 and stride = 1]

where
lSRGen =

N∑
n=1
−log

[
DΘD

(
GΘG

(
ILR

))]
(3.8)

X in content loss was a choice between MSE or VGGi,j. The content loss defined
in the paper was a VGG loss based on a pre-trained 19-layer VGG network. The i, j
represent the choice of feature map obtained by the j-th convolution after activation
before the i-th max-pooling layer. The observation drawn by the authors [32] in this
aspect was that a better texture detail was attained on choosing a higher level feature
map (VGG5,4 when compared to VGG2,2). DΘD

(
GΘG

(
ILR

))
is the probability that

the reconstructed image GΘG

(
ILR

)
, where ILR is the LR image, is a HR image.

3.3.2 ESRGAN

Wang et al. in 2018 proposed an enhanced SRGAN termed ESRGAN improving
on the SRGAN architecture. The changes made are removal of BN5 from each
residual blocks as in [34] which showed reduction in artifacts and computational
expense. Though the higher architecture of the generator derived from SRResNet,
the residual blocks are replaced by RRDBs6 which is a multi level residual network as
seen in fig.3.12 and using residual scaling [34,48]7. In addition a smaller initialization
is used to better train the deeper residual network [53].

The standard discriminator used in SRGAN is replaced by a Relativistic Discrim-
inator [22, 53] which allows for the distinguishing factor to be a more comparative
’more realistic than fake data or vice versa’ when compared to a direct ’real or fake’.

5BN: Batch Normalization
6RRDB: Residual in Residual Dense Block
7Residual Scaling: multiplying a constant between 0 and 1 to the residuals

30

3 Related Work / State of the Art

Figure 3.12: [53] RRDB architecture

This takes into the account the gradients of the generated and real data into the
loss function as opposed to only generated data in SRGAN [53]. This change of
discriminator allows for the network to learn generating better texture detail and
sharper edges. Further, a change in perceptual loss introduced in [32] is proposed
by the authors. The perceptual loss measured in [32] was measured from the feature
map extracted after the activation. The authors explain that, in deeper networks
the activation features are sparse and thus provide weak supervision resulting in
lower performance. And that the features after activation also caused inconsistent
brightness during the reconstruction phase. Also, the authors empirically found
that training a deeper network benefited from the greater receptive field offered by
a larger patch size, 128 × 128 HR sub-images in [53] as opposed to 96 × 96 HR
sub-images during training in [32], as it helped capture more semantic information.
This benefit though came at the cost of computational expense and longer training
durations.

3.3.3 SRFeat

Like ESRGAN [53], the higher architecture of SRResNet was retained by the authors
of SRFeat [42] in their generator model with the 16 residual blocks for non linear
mapping and 2 sub-pixel convolution [46] blocks.

31

3 Related Work / State of the Art

Figure 3.13: [42] SRFeat architecture with the short and long range skip connections
represented in the Generator network

The changes made to the generator in [32] are the addition of a 9×9 convolutional
layer at the beginning of the network for extracting a feature map from a wider initial
receptive field, the addition of the long skip connections with 1× 1 convolutions to
retain information from the low level features extracted and as a means for the
network and short skip connections among the residual blockss for identity mapping
to learn the residual values better [42]. This also provided another path for the
gradient to flow during the back-propagation. Unlike [53], the network retains the
BN layers. The major difference though lies in the adversarial part of the training
where two discriminators are employed namely the image discriminator to measure
the losses in pixel values and a feature discriminator to measure the losses in the
feature maps of the images. The architectures of the generator and the discriminator
can be seen in fig.3.13. Unlike the network architectures in [32, 53], the number of
channels maintained through the nonlinear mapping part of the network is constant.
Two variants are experimented with 68 channels and 128 channels respectively [42].
Quantitative evaluation of the same can be found in [42]. The generator network
proposed by Park et al. with 128 channels set a new state-of-the-art benchmark for
PSNR and SSIM values computed on the Y-channel.

3.3.4 ERCA

In 2019, Hoang et al. proposed the generator network architecture ERCA [19]
Like, the authors of [53], the batch normalization was removed from all the residual
blocks of the generator network architecture of [32] as the increase in performance
and reduction in computational expense was proven in papers like [53]. Further, the

32

3 Related Work / State of the Art

residual channel attention proposed by Zhang et al. in [63] was employed in each
of the residual blocks to adaptively rescale each channel-wise feature by modelling
the inter-dependencies across feature channels and follwing the authors of [42] a
weighted long skip connection for facilitating ease of back-propagation during train-
ing is added. The network architecture can be seen in fig.3.14 taken from the paper.

Figure 3.14: ERCA [19] generator network architecture with residual channel attention

The discriminator architecture is similar to [42] as seen in fig.3.13. The architec-
ture stays the same for both image discriminator and the feature discriminator but
with each having their own input. The usage of the two discriminators is inspired
by [42].

3.4 Advanced Downsampling Approaches

Down-sampling is one of the most used operation in image processing be it to reduce
the size of an image to view it on a screen or to reduce the size of an image to reduce
the computational expense during training. This is constantly performed using non-
adaptive interpolation approaches mentioned in sec.3.1. This section studies some
of the more advanced, adaptive approaches to downsampling images.

3.4.1 Content-Adaptive Image Downscaling

While the interpolation methods mentioned in sec.3.1 have achieved fairly good re-
sults, there is no correlation between the output pixels. Two pixels generated have
no inter-dependency which would lead to discontinued or overly smoothed images,
the latter in most cases. In 2013, Kopf et al. proposed a novel method that had the
ability to interpolate source pixels while adapting to the features of the surrounding

33

3 Related Work / State of the Art

pixels. It follows the Expectation-Maximization algorithm [10] proposed by Demp-
ster et al. in 1977 which is used to solve a maximum likelihood problem. The
interpolation approaches in sec.3.1 have uniform kernel sizes which are distributed
spatially in a regular grid [27]. The authors solved this reconstruction problem of
the input image from a smaller set of kernel functions localized spatially. Each pixel
is considered a samplr randomly drawn from one such local kernels with uniform
probability distribution [27].
Given an input image X, the proposed algorithm searches for the set of param-

eters θ = {µk,Σk, νk, σk} specific to kernel k with the maximum likelihood. The
parameters µk,Σk are the mean and covariance matrix of the spatial gaussian and
νk, σk are the mean and variance of the color space gaussian [27]. Since the EM
optimization algorithm processes each kernel independently and this does not al-
low for interaction between the said kernels. The authors introduce a three step
method consisting of expectation, maximization and correction steps following the
initialization of kernels. While, the expectation and maximization steps compute
probabilities of pixels with respect to the kernels and using these probabilities in a
weighted maximum-likelihood fit to estimate θ, the correction step introduces three
types of constraints to obtain a better representation of the down-sampled image.

• Spatial constraint: to constraint any drastic drift in the kernel’s location in
reference to the reconstructed downsampled image. This is achieved by limit-
ing the extent the spatial mean can move by constraining µk in a box centered
around the center of the output pixel. Further improving the smoothness by
shifting µk halfway between its estimated location and the mean of its four
neighbours [27].

• Locality constraint: to prevent the kernels to become too large or to vanish
as the output pixels are all of the same size. This is achieved by clamping the
elements of the diagonal eigenvalue matrix to the interval [0.005, 0.1] providing
a hard constraint on the spatial component. Further Σk instead of being
estimated is controlled explicitly to avoid overly smooth configurations of color.
Further details can be found in [27].

• Edge Orientation constraint: to remove false edges so as to retain the ori-
entation of boundary drawn between two neighbouring pixels. This is achieved
by computing the strong edges between neighbouring kernels with strong gra-
dient change and increasing the smoothness of both such kernels if the orien-
tation deviates by more than 25 degrees from the orientation of the pixel edge.
Mathematical representation can be found in [27].

3.4.2 Perceptually Based Downscaling of Images

Though content-adaptive downscaling proposed by Kopf et al. performs better than
the interpolation approaches previously mentioned, the approach by itself does not
manage to capture the high frequency information. Also, the approach itself focuses

34

3 Related Work / State of the Art

on maximizing the PSNR value which as mentioned in [32], fails to capture the
perception of a human observer. SSIM [56] however is a metric that takes into
account the structure of the image and the checks if an image managed to preserve
the structure of an image while processing. In 2015, Oeztireli et al. in [41] proposed
an optimization problem based on the SSIM.
SSIM is a local measure of patches of images of the same spatial resolution. Rather

than losing the information by downsampling the HR image, the authors upsampled
the downscaled image to compute SSIM value [41]. The downscaling proposed by
the authors was carried out in two steps. Downscaling the image using a regular
interpolation and then adding a filter to adaptively sharpen the downscaled image
to recover important features. Considering a HR image, H and the corresponding
downsampled image as D, the upsampled version of D to be X. The dissimilarity
of H and X by d (H,X). The ideal downscaled image D∗ corresponding to the X∗
resulting in a minimum dissimilarity d (H,X) is solved for. The optimum patch
P ∗ (X) is given by

P ∗ (X) = argminP (X) d (P (H) , P (X)) (3.9)

The authors of [41] thereby define a non-linear filter as follows

d∗i = 1
np

∑
Pk

µkh + σkh
σkl

(
li − µkh

)
(3.10)

where d∗i gives the weight assigned to the ith pixel of image D, Pk denotes the np
sized patches that overlap this pixel. The ratio of the standard deviations of the
input image patch h and the filtered version l as σkh/σkl . The standard patch size
chosen by the authors is np = 4 corresponding to a 2 × 2 patch. The authors also
pointed out that the increase in the patch size leads to a loss of small scale features.
The resulting images can be found in [41]. Though the Oeztireli et al. succeeded

in reducing jagged edge artifacts and flicker in real time, the ringing artifacts still
exist and aliasing still occurs in continuous regular structures. As mentioned in [41],
the approach is indifferent to scene semantics. Like other adaptive approaches, noise
if present in the HR image is carried to the downsampled image. Any intentional
blur in the image is not recognized or preserved as the method involves solving
for optimum local structures. The filter developed through optimization in [41],
for simplicity consider the input image consisting only of one channel. For the
downsampling operation, the optimized filter is applied to each channel of a given
image individually which could cause the colors of the image to vary [57].

3.4.3 Rapid, Detail-Preserving Image Downscaling

While the Kopf et al. and Oeztireli et al. proposed approaches for adaptive down-
scaling, the runtime on both the approaches was very high for any real time task.
In 2016, Weber et al. in [57] proposed rapid, detail-preserving image downscaling

35

3 Related Work / State of the Art

(DPID) to preserve the high-frequency details even at high downscaling factors while
making it less computationally expensive and time efficient.
The algorithm is a two step convolution operation. Since the task involves down-

sampling by large factors, for a faster approximation, a box filter is used to rapidly
downscale an input HR image I to obtain ID of dimension similar to the desired
output. ID is then convolved the first time to obtain a guidance image Ĩ. Each
pixel in Ĩ is referred to as the local neighbourhood of the corresponding patch of
pixels in I. In [57], the patch of pixels in I that are mapped to a pixel p in output
image O is denoted by ΩI (p). This guidance image Ĩ is an integral part of as-

sembling the final image output O from I. For each patch of pixels ΩI (p), the pixel
values which deviate from the local neighbourhood p are assigned higher weights for
the final convolution. The authors of [57] refer to the difference of pixels from the
local neighbourhood as the distinctness and is computed by ‖I (q)− I (p)‖ where
q ε ΩI (p). Each output pixel O (p) is computed as shown in [57] as

O (p) = 1
kp

∑
q εΩI(p)

I (q)

∥∥∥I (q)− Ĩ (p)

∥∥∥
Vmax

λ (3.11)

Where
(∥∥∥I (q)− Ĩ (p)

∥∥∥ /Vmax)λ is the range kernel and kp is the sum of the range
kernel across ΩI (p). λ is the only variable in the whole equation, that the user can
change. Vmax is the norm of the color space.
The adaptive question contrary to the previous approaches favors the values with

higher differences from the local neighbourhood. Experimentally and through a
thorough user study, Weber et al. figured that the values of λ around or less than 1
produced more pleasing images than higher. Extensive study can be found in [57].
This approach, due to its neglecting the low-pass filter to remove frequencies above
the Nyquist limit, is prone to aliasing and thickening of thin lines with its emphasis
on distinctness. The user study in [57] still shows consistently high approval to the
approach and the low run time make this one of the most viable approaches.

3.4.4 Comparing Downsampling Approaches

Fig.3.15 shows the different approaches discussed in this section applied to three
scenarios. As can be seen in the topmost row, DPID handles the noise in the input
image better than the other two approaches especially at λ = 0.5. Aliasing can
be noticed in the second row, in both Kopf et al. and Oeztireli et al.’s approaches
owing to the repeated structure. They also fail to capture a lot of the information

36

3 Related Work / State of the Art

Figure 3.15: [57] Examples of Downsampled Images

in the line art. While DPID at λ = 1.0 overemphasizes on the lines and thickens it,
it still manages to stay within bounds to produce a very clean downscaled image.
This tendency to overemphasize, fails it on pixel art, text and images with strong
boundaries where DPID tends to make them bolder than would be necessary.
Task Aware Image Downscaling [24] proposed by Kim et al. in 2018 is highly

accurate and practical at high sampling factors specific to the super resolution task.
The authors use a deep convolutional auto-encoder trained jointly for the upsampling
and downsampling processes so as to preserve features that better facilitate the
upsampling image to closely approximate the HR image. The results of the same
in [24] show great promise as they can aid the pre-existing SR models to perform
better.

37

CHAPTER 4

Implementation

The work done in this thesis includes training selected upsampling models on specific
datasets and studying the influence of the downsampling approaches discussed in
sec.3.4 on these upsampling model versions.

4.1 Upsampling

The criterion for choosing models for the study in this thesis were the similarities
in the approaches. The models that best produced superior results as discussed in
sec.3.3 are GAN based and will be the point of focus in the study. The models
thus chosen are SRGAN [32], SRFeat [42] and ERCA [19]. The study is to ver-
ify the influence of the training datasets on each said model. For fairness during
the evaluation, the models were trained as similarly as possible for all the trainnig
datasets from the scratch. The generator networks from each of the models men-
tioned above are unaltered but the discriminator networks used during the GAN
part of the training inspired from [42]. Following [42] and [19], two discriminators
were used during the GAN part of the training, namely the image discriminator and
the feature discriminator. The training was conducted in two phases. The genera-
tor networks from [32], [42] and ERCA [19] were first pre-trained on a augmented
DIV2K dataset. Following this, each of the pre-trained models were trained using
the GAN framework on flickr1024, stanford cars dataset and oregon wildlife dataset.
All the images in the datasets are augmented as mentioned in sec.4.1.2. The models
were all trained to upsample by a factor of 4 with the HR images of size 296× 296
and LR images of size 74 × 741. The resultant trained models are not restricted

1Note: In every instance where a number of images in an augmented dataset is mentioned in
sec.4.1.2, it corresponds to that many 296 × 296 HR and corresponding bicubic downsampled
74× 74 LR images.

4 Implementation

by these specific resolutions but will be operating with a sampling factor of 4. The
training process used will be further discussed in sec. 4.1.3 and sec.4.1.4 respectively.

4.1.1 Hardware

All the models were trained in the thesis were carried on a NVIDIA Quadro P5200
GPU on board a HP ZBook 17 G5. The workbook runs a Intel(R) Core(TM) i7-
8850H processor with a 32 GB RAM and a CPU memory clock speed of 2.60 GHz.
The on board NVIDIA GPU has a dedicated memory of 16 GB, contains 2560 cores
for multiple threads, a bus width of 256 bits and a band width of 230 GB/s. The
GPU has a base clock speed of 1.556 GHz and can reach boosted clock speed of
1.746 GHz. The effective memory clock speed stands at 7.200 GHz. The code was
also tested on a machine running a Intel(R) core(TM) i5-6300U processor with a
memory clock speed of 2.40 GHz, 8 GB Ram and no on board GPU but the run-time
of the code subsequently increases if run on a CPU.

4.1.2 Training Datasets

• The dataset chosen for the pre-training of the generator networks is DIV2K [7]
which contains 800 images for training and 100 images for testing each with
image resolutions around 2000×1500. These are individually augmented using
the pre processing similar to [42] to a cumulative 104, 000 training images and
13, 000 test images.

• The first dataset chosen for the gan-training is flickr1024 dataset [54] which
contains 800 training images each with resolution above 800×800. This dataset
is then augmented similarly to a cumulative 14, 400 images. This dataset was
chosen as it has multiple-domains including (but not only) landscapes, humans,
vehicles.

• The second dataset chosen for the gan-training is the oregon wildlife dataset
[40] with 11, 969 training images. It only contains images of wildlife and is
also domain-specific. This dataset is augmented similar to the stanford cars
dataset to a cumulative of 10, 350 training images.

• The third dataset chosen for the gan-training is the stanford cars dataset [28]
with 8, 144 training images. They comprise of images of variety of cars and is
domain-specific unlike flickr1024. This dataset was not augmented similarly
as to its wide range of resolutions. All the images above 296×296 were center
cropped to match the aspect ratio 1 : 1 and resized to 296×296. This amounts
to a cumulative of 6, 082 training images.

4.1.3 Pre-Training Phase for selected Generators

The generator networks that were trained on the augmented DIV2K dataset are

39

4 Implementation

• SRResNet [32] as seen in the generator network in fig.3.11.

• SRFeat128 [42] with 128 channels as seen in the generator network in fig. 3.13.

• ERCA [19] generator network as seen in fig.3.14.

Each of the networks was trained for 13×104 update iterations over 104, 000 pairs of
296×296 HR and 74×74 LR images2. Each iteration is done with a batch size of 16
or 16 image pairs and 6500 batches per epoch resulting in a total of 20 epochs. The
loss function used for SRResNet and SRFeat is ’mean squared error’ and the loss
function used for ERCA is ’mean absolute error’. The optimizer used for convergence
in all the models during training is the adam optimizer with momentums, β1 = 0.9,
β2 = 0.99 and a learning rate of 10−4 with a decay= 0.5 scheduled at 10th and 15th
epochs.

4.1.4 Adversarial Training Phase

In this thesis, each of the above generators is trained using the GAN [16] framework
and two discriminators simultaneously. The feedback during the update is depen-
dent on the values of both the discriminators. The learning rate selected for the
GAN/Adversarial training is 10−4 and is scheduled to decay with a rate of 0.1 at 3rd
and 5th epochs. The GAN framework [16] solves a min-max problem defined similar
to [16,32,42,53] as

ming maxd

(
Σy∼pdata(y)[log(d (y))] + Σx∼px(x)[log(1− d (g (x)))]

)
(4.1)

where d is the discriminator, y is a sample from the real data and g (x) is the
generated output for the given random noise x from the latent space.
The Loss function followed during the adversarial training of each of the models

is
Lg = Lp + λ

(
Lia + Lfa

)
(4.2)

Where Lp is the perceptual similarity loss which is computed in the feature domain
between the feature maps of the real image and the generated image obtained by
using the VGG-Network [47]. Considering di and df as the image and feature dis-
criminators as used in [42], the corresponding pixel domain image GAN loss and the
feature domain feature GAN loss are given by Lia and Lfa respectively. The equations
for the GAN losses and Discriminator losses can be found in [42].
The graphs representing the behaviour of the networks during the gan trainings

performed are shown in the next three sub-sections.

2The HR images are downsampled by a factor of ×4 using the bicubic interpolation to obtain the
LR images

40

4 Implementation

4.1.4.1 SRGAN

The generator Network from [32] pre-trained on an augmented DIV2K dataset and
the discriminator network from [42] are trained with the GAN framework on the
training datasets mentioned in sec. 4.1.2. The total loss graphs for the generator
and discriminator for SRGAN (SRResNet + Discriminator) are given in fig.4.1.

Figure 4.1: Losses during training of SRGAN on stanford cars, oregon wildlife and
flickr1024 datasets

4.1.4.2 SRFeat

The generator Network from [42] pre-trained on an augmented DIV2K dataset and
the discriminator network from [42] are trained with the GAN framework on the
training datasets mentioned in sec. 4.1.2. The loss graphs for the generator and
discriminator for SRFeat are given in fig.4.2. The graph shows higher number of
the update iterations when compared to the other two models. This was done to
verify if higher update iterations varied the performance. The evaluation in the next
chapter of this model was only done with the model trained for 6 epochs for fairness.

Figure 4.2: Losses during training of SRFeat on stanford cars, oregon wildlife and
flickr1024 datasets

41

4 Implementation

4.1.4.3 ERCA

The generator Network from [19] pre-trained on an augmented DIV2K dataset and
the discriminator network from [42] are trained with the GAN framework on the
training datasets mentioned in sec. 4.1.2. The loss graphs for the generator and
discriminator for ERCA are given in fig.4.3

Figure 4.3: Losses during training of ERCA on stanford cars, oregon wildlife and flickr1024
datasets

4.2 Downsampling

Figure 4.4: Downsampled and rescaled crops of the comic image from set14

Downsampling models chosen for this thesis are two adaptive interpolation ap-
proaches. The task here is to study the influence of available downsampling models
on the quality of the images generated during upsampling. For each available HR
image, a downscaled version (LR) of the image is generated using bicubic [23], Lanc-
zos [13], Perceptually based downscaling [41] and DPID(λ = 0.5) [57] approaches.

42

4 Implementation

These LR images are then upsampled using each of the model from section 4.1. The
quantitative study of which can be found in the next chapter. Fig. 4.4 shows the
downscaling operation done on a sample image from Set14 [55] dataset using each
approach. Content adaptive image downscaling [27] is also studied initially but the
processing time for downscaling using this method is extremely high and is not viable
for any real-time application and hence is excluded from the extensive evaluation in
chapter 5. During the implementation of the content adaptive downscaling, it was
noted that an image of 62× 90 takes about 45 min on an Intel Core i5 processor at
2.40Ghz speed.

43

CHAPTER 5

Evaluation

This chapter contains the quantitative evaluation of the up- and downsampling
performed by the models discussed in sections 4.1 and 4.2 respectively. The methods
and metrics used are described in the following sections.

5.1 Benchmark Test Sets

The benchmark test sets chosen for the evaluation of the upsampling models are

• Set5 [55]: This dataset consists of 5 images of varying resolutions and is
commonly used a test set in the field of super resolution.

• Set14 [55]: This dataset consists of 14 images of varying resolutions and
is commonly used a test set in the field of super resolution alongside set5.
This dataset is further used to evaluate the downsampling approaches and is
discussed further in section 5.4.

• Subset of oregon wildlife dataset [40]: This dataset contains a subset of
11 test images from the oregon wildlife dataset excluded from the training
process. This is to test the performance of the models on unknown images in
the same domain.

• Subset of stanford cars dataset [28]: This dataset contains a subset of 10
test images from the stanford cars dataset excluded from the training process.
This is to test the performance of the models on unknown images in the same
domain.

5 Evaluation

5.2 Metrics

The metrics chosen to evaluate the performance of all the trained upsampling models
and the influence of the downsampling approaches on each of them are

• PSNR: Peak Signal to Noise Ratio is the ratio of the maximum possible
value (MAX[I] = 255 for images) to the mean squared error (MSE) usually
expressed in logarithmic decibels and is a pixel-wise metric. Higher the PSNR
value, higher the pixel-wise accuracy of the image. It is given by

PSNR = 10.log10

(
MAX2

I

MSE

)
(5.1)

• SSIM [56]: A full reference metric made as an improvement to PSNR which
compares the uncompressed reference of the image. High SSIM indicates better
structural similarity. It compares two windows x, y of common size N × N
with averages across the values µx, µy, variances σ2

x, σ
2
y respectively and a co-

variance σxy. It is given by

SSIM (x, y) = (2µxµy + c1) (2σxy + c2)(
µ2
x + µ2

y + c1
) (
σ2
x + σ2

y + c2
) (5.2)

where c1 and c2 are variables to stabilize the fraction.

• RMSE [8]: In [8], the authors use RMSE (Root Mean Squared Error) in
tandem with the PI (Perceptual Index) to evaluate it while comparing it with
a pixel-wise metric. Low values of RMSE implies better pixel-wise accuracy
of the image. RMSE is given by

RMSE (x, y) =

√√√√√i=n∑
i=1

∥∥∥(xi − yi)2
∥∥∥

n
(5.3)

where i is the current pixel and xi and yi are the two pixels each in the real
and generated image to be compared and n is the total number of pixels.

• PI [8]: The authors of [8] introduced this as a no reference metric that quanti-
tatively represents the perceptive quality of a given image independent of any
reference image. This metric has been used in PIRM-SR 2018 challenge. Lower
the value of PI, better the quality of the image. PI is computed from the two
no reference values namely the Ma [36] value and the NIQE [39](Naturalness
Image Quality Evaluator). The Perceptual Index, PI is given by

PerceptualIndex (PI) = 1
2((10−Ma) +NIQE) (5.4)

45

5 Evaluation

5.3 Evaluation of Upsampling Models

To evaluate upsampling models, the HR images from benchmark test datasets men-
tioned in section 5.1 are first downsampled using bicubic interpolation and then
upsampled using versions of SRGAN [32], SRFeat [42] and ERCA [19]. Each of the
models is trained individually on DIV2K dataset, flickr1024 dataset, oregon wildlife
dataset and stanford cars dataset. 3 pre-trained generators trained on DIV2K and
each trained on the rest of the 3 datasets resulting in 9 fully trained generators (after
training them using the GAN framework). This results in a cumulative of 12 models
which are evaluated on the 4 test sets from section 5.1. The following sections con-
tain extensive quantitative study using the metrics from section 5.2 represented in
tabular form. Each HR, SR image pair is evaluated using the metrics and the mean
of the whole set is shown in the corresponding tables. Note that DIV2K in training
dataset column represents the 3 pre-trained generators and is not fully trained using
the GAN [16] framework. Flickr1024, oregon wildlife and stanford cars in the same
column represent a fully trained generator post adversarial training. Also, there
are 48 possible test dataset-US1 pairs and 4 metrics per pair. For readability, each
pair of table only shows the values for one test set resulting in a total of 8 tables.
All observations from the evaluation of the upsampling models can be found in sec.
5.3.6.

5.3.1 Set5

Table 5.1 and 5.2 contain the PSNR, SSIM and RMSE, PI values respectively which
were obtained from the images from Set5 [55] upsampled using all 12 models. The
model architecture is given in the top row and the training dataset used for each
model in the left column.

Training
Dataset

SRGAN SRFeat ERCA
PSNR (db) SSIM PSNR (db) SSIM PSNR (db) SSIM

DIV2K 31.75 0.88 31.73 0.89 32.19 0.89
Flickr1024 29.44 0.74 29.12 0.74 28.01 0.78

Oregon Wildlife 27.38 0.71 28.01 0.76 26.45 0.68
Stanford Cars 26.43 0.67 27.82 0.71 24.27 0.70

Table 5.1: Table of PSNR and SSIM values for upsampled Set5 images

1test datasets (4) - Upsampling Models(12)

46

5 Evaluation

Training
Dataset

SRGAN SRFeat ERCA
RMSE PI RMSE PI RMSE PI

DIV2K 7.14 6.14 7.13 6.08 6.73 5.97
Flickr1024 10.06 5.68 9.26 5.59 10.46 5.56

Oregon Wildlife 11.34 6.53 10.03 6.42 12.72 6.05
Stanford Cars 10.90 5.17 9.54 5.02 13.69 4.94
Table 5.2: Table of RMSE and PI values for upsampled Set5 images

5.3.2 Set14

Table 5.3 and 5.4 contain the PSNR, SSIM and RMSE, PI values respectively which
were obtained from the images from Set14 [55] upsampled using all 12 models. The
model architecture is given in the top row and the training dataset used for each
model in the left column.

Training
Dataset

SRGAN SRFeat ERCA
PSNR (db) SSIM PSNR (db) SSIM PSNR (db) SSIM

DIV2K 28.80 0.79 28.74 0.79 29.07 0.80
Flickr1024 27.63 0.69 25.12 0.71 25.77 0.68

Oregon Wildlife 23.30 0.68 25.65 0.67 25.16 0.61
Stanford Cars 26.64 0.65 26.41 0.69 24.12 0.62

Table 5.3: Table of PSNR and SSIM values for upsampled Set14 images

Training
Dataset

SRGAN SRFeat ERCA
RMSE PI RMSE PI RMSE PI

DIV2K 10.77 5.52 10.82 5.40 10.49 5.34
Flickr1024 14.61 5.15 10.83 5.03 14.40 5.10

Oregon Wildlife 18.56 5.97 12.19 5.45 15.04 7.05
Stanford Cars 16.29 5.44 11.17 5.26 17.14 4.86

Table 5.4: Table of RMSE and PI values for upsampled Set14 images

5.3.3 Oregon Wildlife Dataset

Table 5.5 and 5.6 contain the PSNR, SSIM and RMSE, PI values respectively which
were obtained from the images from the subset of oregon wildlife test set [40] up-
sampled using all 12 models. Note that the images used to test were excluded from
the training process and the models processed the images for the first time. In the
tables the model architecture is given in the top row and the training dataset used
for each model in the left column.

47

5 Evaluation

Training
Dataset

SRGAN SRFeat ERCA
PSNR (db) SSIM PSNR (db) SSIM PSNR (db) SSIM

DIV2K 28.42 0.78 28.39 0.77 28.51 0.78
Flickr1024 26.68 0.69 25.54 0.77 26.10 0.68

Oregon Wildlife 27.67 0.71 28.33 0.68 25.45 0.61
Stanford Cars 26.76 0.64 27.53 0.64 24.05 0.64

Table 5.5: Table of PSNR and SSIM values for upsampled images from subset of oregon
wildlife dataset

Training
Dataset

SRGAN SRFeat ERCA
RMSE PI RMSE PI RMSE PI

DIV2K 10.52 6.18 10.55 6.03 10.44 6.12
Flickr1024 11.47 5.98 11.98 5.29 13.46 5.34

Oregon Wildlife 12.50 6.01 12.15 5.73 14.21 5.93
Stanford Cars 10.31 5.83 10.36 5.22 12.14 5.46

Table 5.6: Table of RMSE and PI values for upsampled images from subset of oregon
wildlife dataset

5.3.4 Subsets of Stanford Cars Dataset

Table 5.7 and 5.8 contain the PSNR, SSIM and RMSE, PI values respectively which
were obtained from the images from the subset of stanford cars test set [28] upsam-
pled using all 12 models. Note that the images used to test were excluded from
the training process and the models processed the images for the first time. In the
tables the model architecture is given in the top row and the training dataset used
for each model in the left column.

Training
Dataset

SRGAN SRFeat ERCA
PSNR (db) SSIM PSNR (db) SSIM PSNR (db) SSIM

DIV2K 27.27 0.85 27.22 0.84 27.54 0.86
Flickr1024 28.32 0.62 27.18 0.71 24.85 0.75

Oregon Wildlife 26.78 0.62 26.82 0.69 25.96 0.59
Stanford Cars 29.88 0.64 24.93 0.65 24.84 0.65

Table 5.7: Table of PSNR and SSIM values for upsampled images from subset of stanford
cars dataset

48

5 Evaluation

Training
Dataset

SRGAN SRFeat ERCA
RMSE PI RMSE PI RMSE PI

DIV2K 11.33 5.44 11.42 5.38 11.00 5.15
Flickr1024 11.24 5.74 12.66 5.42 14.75 5.90

Oregon Wildlife 14.75 5.53 12.75 5.63 16.38 6.21
Stanford Cars 12.42 5.04 11.64 4.99 18.72 5.03

Table 5.8: Table of RMSE and PI values for upsampled images from subset of stanford
cars dataset

5.3.5 Sample Image Sets from Upsampling

This section contains some sample resultant image sets. Fig.5.1 consists of the
baby image from Set5 test set upsampled using the 3 pre-trained generators. The
values clearly represent the close similarity in performance among the 3 models
before adversarial training. Fig. 5.2 consists of the bird image from Set5 test set
upsampled using the SRGAN model trained on each of the training datasets. Fig.5.3
consists of the lenna image from Set14 test set upsampled using the ERCA model
trained on each of the training datasets. Though the fully trained models in fig.5.2
show some checkerboard artifacts, the models trained on stanford cars in both fig.5.2
adn 5.3 outperformed the others perceptually by a certain margin possibly owing
to the training dataset consisting of monochromatic cars which led to the flattening
of colours which are perceptually more pleasing than jagged details but that at the
cost of texture detail as can easily be seen in the blue feathers in the fig.5.3.

Figure 5.1: Sample image from Set5 [55] upsampled using the pre-trained generators
trained on DIV2K with values represented as PSNR/SSIM/PI

49

5 Evaluation

Figure 5.2: Sample image from Set5 [55] upsampled using SRGAN trained on all 4 datasets
with values represented as PSNR/SSIM/PI

Figure 5.3: Sample image from Set14 [55] upsampled using ERCA trained on all 4 datasets
with values represented as PSNR/SSIM/PI

5.3.6 Observations from the Study of Upsampling Models

This observations made on this study and are given by dataset that the models
SRGAN, SRFeat and ERCA were trained on. Note that, DIV2K was used to pre-
train the generators and the rest of the datasets were used to train the models further
using the GAN framework. All three models were trained under similar conditions
with the same training parameters to produce fairly similar results to draw on the
differences caused by the dataset they were trained on.

• The performance of pre-trained generators post training on DIV2K were com-
parable to the state-of-the-art results from [32, 42] as can be seen from the
tables in the section 5.3. The images produced by the pre-trained generators
were highly consistent and will make for a pretty efficient choice on their own
because training with the GAN framework is unstable and it is possible to run
into issues like the vanishing gradient and mode collapse [9].

• In all the models trained on flickr1024, the models showed minor improvement
in performance as the models seem to have learnt very less. This can be
observed from the loss curves in figs. 4.1, 4.2 and 4.3. Though the images from
flickr1024 were of fairly high definition, the background and the foreground

50

5 Evaluation

are simultaneously in focus and most of the images are highly saturated colors
which could be the reason for the overshot colors as can be seen in fig.5.2.

• In all the models trained on Oregon wildlife dataset, the model deteriorated in
performance and showed checkerboard artifacts for some and it can be noticed
in figs 5.2 and 5.3. Ideally, a model trained on domain specific data should
perform better than the models trained on multiple domains but as can be
seen in table 5.6 even on the subset of Oregon wildlife dataset, the models
trained on multiple domains performed better. What one can infer from this
is the specificity of the dataset could be a factor. The dataset though specific
to wildlife in Oregon has 30 different animal species and contained images that
were sketches or taken from a footage as well.

• In all the models trained on Stanford cars dataset, the models performed
fairly well for the metrics chosen as can be seen in tables 5.7 and 5.8. But
the images itself had flat tones of color. The images though pleasant to the
look at, any texture detail from the HR image are not replicated. This can be
observed clearly in the feathers from fig. 5.3. This can be from the fact that
the dataset contains monochromatic car images with fairly flat tones of color.
Some resultant images also showed reduced saturation of colors as can be seen
in the last row of fig. 5.4.

5.4 Upsampling specific Evaluation of Downsampling Methods

To evaluate the influence of the downsampling method used before the upsampling
on the performance of the upsampling models, the images from Set14 are downsam-
pled using bicubic [23], lanczos [13], perceptually based downscaling [41] and rapid
detail preserving downscaling [57] methods. These are each then upsampled using
the 12 model variations (3 pre-trained generators and 9 fully trained generators).
Content adaptive downsampling is another method studied but the processing time
of the algorithm was extremely slow for it having any real-time applications. On
an Intel core i5 processor running at 2.40GHz, an image of size 32 × 90 took 45
mins to downscale. Hence it was excluded from the extensive study using the test
sets. The PSNR, SSIM and RMSE, PI are calculated for each of the HR, SR image
pair. The means for each SR version of Set14 are then represented in a tabular form
in the following sections. Note that this amounts to 48 possible DS-US2 pairs and
4 metrics per pair. For readability, each pair of tables contain the values for the
models trained on one particular training dataset. The resulting 8 tables can be
found in the following sections.

2Downsampling Method (4) - Upsampling Model (12)

51

5 Evaluation

5.4.1 Generators Pre-trained on DIV2K

Table 5.9 and 5.10 contain the PSNR, SSIM and RMSE, PI values respectively
which were obtained by first downsampling the images from Set14 [55] using the 4
downsampling methods and then upsampling each of them using the 3 generator
models obtained post pre-training SRGAN, SRFeat and ERCA on DIV2K dataset
[7]. The model architecture is given in the top row and the downsampling methods
used in the left column. Example set of resultant images from running the ERCA
model trained on DIV2K dataset can be found in the DIV2K (2nd) row of images in
fig. 5.4.

DS Method SRGAN SRFeat ERCA
PSNR (db) SSIM PSNR (db) SSIM PSNR (db) SSIM

Bicubic 28.80 0.79 28.74 0.79 29.07 0.80
Lanczos 28.45 0.79 28.41 0.79 28.55 0.80

Perceptually Based 21.45 0.57 21.57 0.57 20.35 0.54
DPID (λ=0.5) 26.73 0.74 26.90 0.74 25.85 0.72

Table 5.9: Table of PSNR and SSIM values for Set14 upsampled from various LR image
versions by models trained on DIV2K dataset

DS Method SRGAN SRFeat ERCA
RMSE PI RMSE PI RMSE PI

Bicubic 10.77 5.52 10.82 5.40 10.49 5.34
Lanczos 11.09 5.42 11.12 5.17 11.00 5.19

Perceptually Based 22.61 4.12 22.35 4.04 25.75 3.78
DPID (λ=0.5) 13.25 4.47 13.07 4.39 14.26 4.26

Table 5.10: Table of RMSE and PI values for Set14 upsampled from various LR image
versions by models trained on DIV2K dataset

5.4.2 Generators Trained on Flickr1024

Table 5.11 and 5.12 contain the PSNR, SSIM and RMSE, PI values respectively
which were obtained by first downsampling the images from Set14 [55] using the 4
downsampling methods and then upsampling each of them using the 3 generator
models obtained post the adversarial training of SRGAN, SRFeat and ERCA on
flickr1024 dataset [54]. The model architecture is given in the top row and the
downsampling methods used in the left column. Example set of resultant images
from running the ERCA model trained on flickr1024 dataset can be found in the
flickr1024 (3rd) row of images in fig. 5.4.

52

5 Evaluation

DS Method SRGAN SRFeat ERCA
PSNR (db) SSIM PSNR (db) SSIM PSNR (db) SSIM

Bicubic 27.63 0.69 25.12 0.71 25.77 0.68
Lanczos 26.88 0.68 25.10 0.68 25.93 0.64

Perceptually Based 20.53 0.55 21.12 0.60 18.37 0.28
DPID (λ=0.5) 24.90 0.61 24.93 0.64 22.20 0.48

Table 5.11: Table of PSNR and SSIM values for for Set14 upsampled from various LR
image versions by models trained on flickr1024 dataset

DS Method SRGAN SRFeat ERCA
RMSE PI RMSE PI RMSE PI

Bicubic 14.61 5.15 10.83 5.03 14.40 5.10
Lanczos 15.28 4.93 12.55 4.98 14.22 5.02

Perceptually Based 18.09 4.69 18.54 4.50 16.76 4.36
DPID (λ=0.5) 14.44 4.72 11.78 4.32 13.78 4.57

Table 5.12: Table of RMSE and PI values for Set14 upsampled from various LR image
versions by models trained on flickr1024 dataset

5.4.3 Generators Trained on Oregon Wildlife Dataset

Table 5.13 and 5.14 contain the PSNR, SSIM and RMSE, PI values respectively
which were obtained by first downsampling the images from Set14 [55] using the 4
downsampling methods and then upsampling each of them using the 3 generator
models obtained post the adversarial training of SRGAN, SRFeat and ERCA on
oregon wildlife dataset [40]. The model architecture is given in the top row and the
downsampling methods used in the left column. Example set of resultant images
from running the ERCA model trained on Oregon wildlife dataset can be found in
the Oregon wildlife (4th) row of images in fig. 5.4.

DS Method SRGAN SRFeat ERCA
PSNR (db) SSIM PSNR (db) SSIM PSNR (db) SSIM

Bicubic 23.30 0.68 25.65 0.67 25.16 0.61
Lanczos 23.79 0.58 26.05 0.62 25.96 0.63

Perceptually Based 21.15 0.51 23.15 0.59 25.44 0.66
DPID (λ=0.5) 23.47 0.58 25.93 0.62 24.56 0.64

Table 5.13: Table of PSNR and SSIM values for for Set14 upsampled from various LR
image versions by models trained on oregon wildlife dataset

53

5 Evaluation

DS Method SRGAN SRFeat ERCA
RMSE PI RMSE PI RMSE PI

Bicubic 18.56 5.97 12.19 5.45 15.04 7.05
Lanczos 16.65 5.24 13.58 5.26 13.80 6.85

Perceptually Based 23.04 4.95 16.22 5.01 15.24 5.79
DPID (λ=0.5) 17.50 5.10 12.45 5.09 16.89 5.97

Table 5.14: Table of RMSE and PI values for Set14 upsampled from various LR image
versions by models trained on oregon wildlife dataset

5.4.4 Generators Trained on Stanford Cars Dataset

Table 5.15 and 5.16 contain the PSNR, SSIM and RMSE, PI values respectively
which were obtained by first downsampling the images from Set14 [55] using the 4
downsampling methods and then upsampling each of them using the 3 generator
models obtained post the adversarial training of SRGAN, SRFeat and ERCA on
stanford cars dataset [28]. The model architecture is given in the top row and the
downsampling methods used in the left column. Example set of resultant images
from running the ERCA model trained on Stanford cars dataset can be found in the
stanford cars (last) row of images in fig. 5.4.

DS Method SRGAN SRFeat ERCA
PSNR (db) SSIM PSNR (db) SSIM PSNR (db) SSIM

Bicubic 26.64 0.65 26.41 0.69 24.12 0.62
Lanczos 27.63 0.67 27.15 0.68 24.67 0.64

Perceptually Based 24.88 0.59 22.89 0.61 20.80 0.53
DPID (λ=0.5) 27.47 0.66 27.34 0.64 23.88 0.62

Table 5.15: Table of PSNR and SSIM values for for Set14 upsampled from various LR
image versions by models trained on stanford cars dataset

DS Method SRGAN SRFeat ERCA
RMSE PI RMSE PI RMSE PI

Bicubic 16.29 5.44 11.17 5.26 17.14 4.86
Lanczos 16.51 4.79 11.26 4.73 16.32 3.66

Perceptually Based 17.57 4.01 18.13 4.17 19.56 3.57
DPID (λ=0.5) 16.33 4.30 12.62 4.23 20.02 3.39

Table 5.16: Table of RMSE and PI values for Set14 upsampled from various LR image
versions by models trained on stanford cars dataset

54

5 Evaluation

5.4.5 Sample Image Set for Upsampling specific Downsampling

For simplicity, the baboon image from Set14 is downsampled using bicubic, lanczos,
perceptually based downscaling and DPID and each of the 4 images is upsampled
using the 4 versions of ERCA. The downsampling methods used to generate the LR
images are shown at the top and the generator’s training dataset is shown at the
left of each corresponding row. The first row contains the versions of LR images
and the right column contains the same HR image for reference. Note that λ = 0.5
which represents how much weight is assigned to the pixels that are different from
their local neighbourhood (see sec. 3.4.3) as at λ = 1 the emphasis is much higher
leading to a noisy image, see [57] for further examples.

Figure 5.4: Sample image from Set14 [55] upsampled from each LR version using ERCA
trained on all 4 datasets

55

5 Evaluation

5.4.6 Observations from the Evaluation of Downsampling Methods

Other than the fact that the models trained on Oregon wildliefe dataset’s improved
perception and replication of fur like patterns as seen in the 4th row of fig. 5.4, the
observations made from the study of the influence of downsampling methods on the
performance of upsampling models are given by downsampling method hereafter. It
is noteworthy that the performance of all the upsampling model versions improved
when downsampling methods other than the bicubic interpolation were chosen.

• Upsampling operation in studies are commonly run on an image downsampled
using bicubic and is a common practice among the researchers in the field of
super resolution. The values obtained from upsampling images downsampled
using bicubic interpolation are set as benchmarks and all following methods
will be studied in comparison to them.

• Upsampling the images downsampled by Lanczos [13] interpolation performed
slightly better than bicubic as can be seen in the tables from 5.4 and the lanczos
(2nd) column in fig. 5.4. Considering that the run-time of downscaling an
image using Lanczos is not that much slower than using bicubic and also that it
is available with most image processing frameworks including and not exclusive
to OpenCV and Pillow, its a better alternative owing to its accessibility on
par with Lanczos.

• Perceptually based downscaling proposed by the authors of [41] quantitatively
show the best performance according to the perceptual index metric and lowest
according to all the pixel wise metrics as seen from the tables in section 5.4.
That said, as seen in the perceptually based downscaling (3rd) column of the
fig. 5.4, the downsampled image shows that the method preserves better
features during downsampling operations and has better edges than the two
non adaptive interpolation methods above. But, when upsampled, the images
have a high emphasis on all the edges making them look more noisy and jagged
than the rest of the methods.

• DPID proposed by the author of [57] performs extremely well second only to
the perceptually based downscaling according to the perceptual index metric
as seen from the tables in section 5.4. The images in the DPID (4th) column
represents this pretty well. It has a good balance of the emphasis on the pix-
els outside the local neighbourhood (high frequency information) and overall
image perceptual quality. DPID (λ = 0.5) being the best among the selected
approaches to better the results of upsampling approaches significantly. Also,
since λ in the method is a variable and can alter how much weight is given
to the high frequency information, this makes a very viable option for futher
improving the performance. As given in [57], the values of λ greater than 1
generate noisy images, so the values in the range of 0.5 and 1 are better suited.

56

CHAPTER 6

Discussion

This chapter contains the discussion of the results, the subsequent achievements and
potential drawbacks of the work done in this thesis.

6.1 Results

• An extensive study and evaluation has been performed on the training be-
haviour of SRGAN [32], SRFeat [42] and ERCA [19] with respect to each
being trained on the datasets DIV2K [7], Flickr1024 [54], Oregon wildlife [40]
and Stanford cars [28] datasets. The training conditions and parameters were
kept similar to evaluate the differences caused by the training datasets under a
better scope. It was found that the models trained on domain specific datasets
have a high potential to outperform on the specific domain given the dataset is
specific enough. All the quantified results have been represented in a tabular
form in section 5.3 and the detailed inference from the evaluation is given in
section 5.3.6.

• An extensive study and evaluation has been performed on the influence of
adaptive downsampling methods namely "perceptually based image downscal-
ing" [41] and "rapid, detail preserving image downscaling" [57] on the perfor-
mance of each of the models trained on different datasets. It was found that
the varying the downscaling method highly influences the performance of even
the current state-of-the-art models in a positive way. All the quantified re-
sults have been represented in a tabular form in section 5.4 and the detailed
inference from the evaluation is given in section 5.4.6.

6 Discussion

6.2 Achievements

• The training behaviour of the upsampling models from [19, 32, 42], their per-
formance on benchmark datasets and the influence of adaptive downsampling
methods from [41, 57] on the performance of said upsampling models were
quantitatively studied and evaluated.

• In tandem with the thesis, a Graphical User Interface was developed in collab-
oration with IAV GmbH to train the integrated models on available datasets
and run the models to up- or downsample images with the evaluated upsam-
pling models and downsampling methods respectively.

6.3 Drawbacks

• Though to narrow the differences caused by the model network itself on the
training behaviour, the performance and to specifically test the influence of
the chosen training datasets, the discriminator network from [42] was used
during the adversarial training for all three models. This also implies that the
quantified performance might not be true to the model proposed by respective
authors and they could produce results better or otherwise if the study was
performed true to the network architectures.

• Since the process of tweaking the training parameters is empirical in nature,
the initial experiments lasted for a long duration and were all fairly expensive
computationally. Each tweaked set of parameters took anywhere from 5 to 19
hours per epoch depending on the combination of training dataset and model
architecture. All quantified results shown in this work are from the training
parameters stated and not from the experiments.

58

CHAPTER 7

Conclusion and Future Work

Depending on how specific the domain of the chosen training dataset is, the per-
formance of any given model architecture can be improved. The downsampling
methods have a substantial influence on the performance even on the current state-
of-the-art models in the field of Super Resolution (SR). In this work, only the in-
fluence of downsampling methods on the performance of fully trained generators is
evaluated. In the future, advanced downsampling methods may be used to create
the HR LR sets needed for the training of a SR model which should theoretically
better the performance of the generators used in this study overall since they would
have better LR maps for the HR images. Also, this study strictly quantifies the
quality of generated images using available metrics and does not involve any sur-
veys or quantification on classification problems to reinforce the inference drawn
which could also potentially be worked on in the future.

Bibliography

[1] Convolution on RGB Images. http://datahacker.rs/
convolution-rgb-image/

[2] HD Image of Goomba from Paper Mario. https://www.pinterest.de/pin/
821414419507948343/

[3] Image Scaling Methods And Matlab Implementations.
https://aditharajakaruna.wordpress.com/2013/07/12/
image-scaling-methods-and-matlab-implementations/#more-3

[4] An Introduction to Convolutions. https://towardsdatascience.com/
types-of-convolutions-in-deep-learning-717013397f4d

[5] Lanczos Interpolation Image. https://en.wikipedia.org/wiki/Lanczos_
resampling#/media/File:Lanczos-r02-filtering.svg

[6] Practical Guide To Tensorflow Conv2D. https://missinglink.ai/guides/
tensorflow/tensorflow-conv2d-layers-practical-guide/

[7] Agustsson, Eirikur ; Timofte, Radu: Ntire 2017 challenge on single image
super-resolution: Dataset and study. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2017, S. 126–135

[8] Blau, Yochai ; Michaeli, Tomer: The perception-distortion tradeoff. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, S. 6228–6237

[9] Borji, Ali: Pros and cons of gan evaluation measures. In: Computer Vision
and Image Understanding 179 (2019), S. 41–65

[10] Dempster, Arthur P. ; Laird, Nan M. ; Rubin, Donald B.: Maximum
likelihood from incomplete data via the EM algorithm. In: Journal of the
Royal Statistical Society: Series B (Methodological) 39 (1977), Nr. 1, S. 1–22

http://datahacker.rs/convolution-rgb-image/
http://datahacker.rs/convolution-rgb-image/
https://www.pinterest.de/pin/821414419507948343/
https://www.pinterest.de/pin/821414419507948343/
https://aditharajakaruna.wordpress.com/2013/07/12/image-scaling-methods-and-matlab-implementations/#more-3
https://aditharajakaruna.wordpress.com/2013/07/12/image-scaling-methods-and-matlab-implementations/#more-3
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
https://en.wikipedia.org/wiki/Lanczos_resampling#/media/File:Lanczos-r02-filtering.svg
https://en.wikipedia.org/wiki/Lanczos_resampling#/media/File:Lanczos-r02-filtering.svg
https://missinglink.ai/guides/tensorflow/tensorflow-conv2d-layers-practical-guide/
https://missinglink.ai/guides/tensorflow/tensorflow-conv2d-layers-practical-guide/

Bibliography

[11] Dong, Chao ; Loy, Chen C. ; He, Kaiming ; Tang, Xiaoou: Image super-
resolution using deep convolutional networks. In: IEEE transactions on pattern
analysis and machine intelligence 38 (2015), Nr. 2, S. 295–307

[12] Dong, Chao ; Loy, Chen C. ; Tang, Xiaoou: Accelerating the Super-
Resolution Convolutional Neural Network: Supplementary File. In: Computer
Vision-ECCV 2016 (2016)

[13] Duchon, Claude E.: Lanczos filtering in one and two dimensions. In: Journal
of applied meteorology 18 (1979), Nr. 8, S. 1016–1022

[14] Dumitrescu, DragoÈ™ ; Boiangiu, Costin-Anton: A Study of Image Up-
sampling and Downsampling Filters. In: Computers 8 (2019), Nr. 2, S. 30

[15] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep learning.
MIT press, 2016

[16] Goodfellow, Ian J. ; Pouget-Abadie, Jean ; Mirza, Mehdi ; Xu, Bing
; Warde-Farley, David ; Ozair, Sherjil ; Courville, Aaron ; Ben-
gio, Yoshua: Generative adversarial networks (2014). In: arXiv preprint
arXiv:1406.2661 (2019)

[17] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep residual
learning for image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, S. 770–778

[18] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Identity map-
pings in deep residual networks. In: European conference on computer vision
Springer, 2016, S. 630–645

[19] Hoang T Hieu, Nguzen Viet A. Nguzen Xuan Thanh T. Nguzen Xuan Thanh:
ERCA: SISR with Dual Discriminator and Efficient Residual Channel Atten-
tion. https://drive.google.com/file/d/1GFEMT8rCR\7SovhudMWFP_lvP_
DrtHoTP/view

[20] Huang, Gao ; Liu, Zhuang ; Van Der Maaten, Laurens ; Weinberger,
Kilian Q.: Densely connected convolutional networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, S. 4700–
4708

[21] Ioffe, Sergey ; Szegedy, Christian: Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In: arXiv preprint
arXiv:1502.03167 (2015)

[22] Jolicoeur-Martineau, Alexia: The relativistic discriminator: a key element
missing from standard GAN. In: arXiv preprint arXiv:1807.00734 (2018)

61

https://drive.google.com/file/d/1GFEMT8rCR\7SovhudMWFP_lvP_DrtHoTP/view
https://drive.google.com/file/d/1GFEMT8rCR\7SovhudMWFP_lvP_DrtHoTP/view

Bibliography

[23] Keys, Robert: Cubic convolution interpolation for digital image processing.
In: IEEE transactions on acoustics, speech, and signal processing 29 (1981),
Nr. 6, S. 1153–1160

[24] Kim, Heewon ; Choi, Myungsub ; Lim, Bee ; Mu Lee, Kyoung: Task-aware
image downscaling. In: Proceedings of the European Conference on Computer
Vision (ECCV), 2018, S. 399–414

[25] Kim, Jiwon ; Kwon Lee, Jung ; Mu Lee, Kyoung: Accurate image super-
resolution using very deep convolutional networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, S. 1646–1654

[26] Kim, Jiwon ; Kwon Lee, Jung ; Mu Lee, Kyoung: Deeply-recursive con-
volutional network for image super-resolution. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, S. 1637–1645

[27] Kopf, Johannes ; Shamir, Ariel ; Peers, Pieter: Content-adaptive image
downscaling. In: ACM Transactions on Graphics (TOG) 32 (2013), Nr. 6, S.
1–8

[28] Krause, Jonathan ; Stark, Michael ; Deng, Jia ; Fei-Fei, Li: 3D Object
Representations for Fine-Grained Categorization. In: 4th International IEEE
Workshop on 3D Representation and Recognition (3dRR-13). Sydney, Australia,
2013

[29] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geoffrey E.: Imagenet
classification with deep convolutional neural networks. In: Advances in neural
information processing systems, 2012, S. 1097–1105

[30] LeCun, Yann ; Boser, Bernhard ; Denker, John S. ; Henderson, Donnie ;
Howard, Richard E. ; Hubbard, Wayne ; Jackel, Lawrence D.: Backprop-
agation applied to handwritten zip code recognition. In: Neural computation 1
(1989), Nr. 4, S. 541–551

[31] LeCun, Yann ; Bottou, Léon ; Bengio, Yoshua ; Haffner, Patrick:
Gradient-based learning applied to document recognition. In: Proceedings of
the IEEE 86 (1998), Nr. 11, S. 2278–2324

[32] Ledig, Christian ; Theis, Lucas ; Huszár, Ferenc ; Caballero, Jose ; Cun-
ningham, Andrew ; Acosta, Alejandro ; Aitken, Andrew ; Tejani, Alykhan
; Totz, Johannes ; Wang, Zehan u. a.: Photo-realistic single image super-
resolution using a generative adversarial network. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, S. 4681–4690

[33] Liang, Shunlin: Comprehensive Remote Sensing. Elsevier, 2017

62

Bibliography

[34] Lim, Bee ; Son, Sanghyun ; Kim, Heewon ; Nah, Seungjun ; Mu Lee, Ky-
oung: Enhanced deep residual networks for single image super-resolution. In:
Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, 2017, S. 136–144

[35] Limongelli, Maria P. ; Carvelli, Valter: Damage localization in a glass fiber
reinforced composite plate via the surface interpolation method. In: Journal
of Physics: Conference Series 628 (2015), 07. http://dx.doi.org/10.1088/
1742-6596/628/1/012095. – DOI 10.1088/1742–6596/628/1/012095

[36] Ma, Chao ; Yang, Chih-Yuan ; Yang, Xiaokang ; Yang, Ming-Hsuan: Learn-
ing a No-Reference Quality Metric for Single-Image Super-Rolution. In: Com-
puter Vision and Image Understanding (2017), S. 1–16

[37] Mahour, Milad: Scaling of Remote Sensing Information for Orchard Man-
agement, Diss., 12 2018. http://dx.doi.org/10.3990/1.9789036546898. –
DOI 10.3990/1.9789036546898

[38] Meijering, Erik: A chronology of interpolation: from ancient astronomy to
modern signal and image processing. In: Proceedings of the IEEE 90 (2002),
Nr. 3, S. 319–342

[39] Mittal, Anish ; Soundararajan, Rajiv ; Bovik, Alan C.: Making a
â€œcompletely blindâ€ image quality analyzer. In: IEEE Signal Processing
Letters 20 (2012), Nr. 3, S. 209–212

[40] Molina, David: Oregon Wildlife Dataset. https://www.kaggle.com/
virtualdvid/oregon-wildlife. – [Online; accessed 28-Oct-2019]

[41] Öztireli, A C. ; Gross, Markus: Perceptually based downscaling of images.
In: ACM Transactions on Graphics (TOG) 34 (2015), Nr. 4, S. 1–10

[42] Park, Seong-Jin ; Son, Hyeongseok ; Cho, Sunghyun ; Hong, Ki-Sang ; Lee,
Seungyong: Srfeat: Single image super-resolution with feature discrimination.
In: Proceedings of the European Conference on Computer Vision (ECCV), 2018,
S. 439–455

[43] Ramachandran, Prajit ; Zoph, Barret ; Le, Quoc V.: Searching for activa-
tion functions. In: arXiv preprint arXiv:1710.05941 (2017)

[44] Raschka, Sebastian: Visual Explanation on Back Propagation. https://
sebastianraschka.com/faq/docs/visual-backpropagation.html

[45] Sharma, Shallu ; Mehra, Rajesh: Implications of Pooling Strategies in Con-
volutional Neural Networks: A Deep Insight. In: Foundations of Computing
and Decision Sciences 44 (2019), Nr. 3, S. 303–330

63

http://dx.doi.org/10.1088/1742-6596/628/1/012095
http://dx.doi.org/10.1088/1742-6596/628/1/012095
http://dx.doi.org/10.3990/1.9789036546898
https://www.kaggle.com/virtualdvid/oregon-wildlife
https://www.kaggle.com/virtualdvid/oregon-wildlife
https://sebastianraschka.com/faq/docs/visual-backpropagation.html
https://sebastianraschka.com/faq/docs/visual-backpropagation.html

Bibliography

[46] Shi, Wenzhe ; Caballero, Jose ; Huszár, Ferenc ; Totz, Johannes ;
Aitken, Andrew P. ; Bishop, Rob ; Rueckert, Daniel ; Wang, Zehan:
Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2016, S. 1874–1883

[47] Simonyan, Karen ; Zisserman, Andrew: Very deep convolutional networks
for large-scale image recognition. In: arXiv preprint arXiv:1409.1556 (2014)

[48] Szegedy, Christian ; Ioffe, Sergey ; Vanhoucke, Vincent ; Alemi, Alexan-
der A.: Inception-v4, inception-resnet and the impact of residual connections
on learning. In: Thirty-first AAAI conference on artificial intelligence, 2017

[49] Tai, Ying ; Yang, Jian ; Liu, Xiaoming: Image super-resolution via deep
recursive residual network. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, S. 3147–3155

[50] Tai, Ying ; Yang, Jian ; Liu, Xiaoming ; Xu, Chunyan: Memnet: A per-
sistent memory network for image restoration. In: Proceedings of the IEEE
international conference on computer vision, 2017, S. 4539–4547

[51] Tong, Tong ; Li, Gen ; Liu, Xiejie ; Gao, Qinquan: Image super-resolution
using dense skip connections. In: Proceedings of the IEEE International Con-
ference on Computer Vision, 2017, S. 4799–4807

[52] Wadhawan, Ankita ; Kumar, Parteek: Deep learning-based sign language
recognition system for static signs. In: Neural Computing and Applications
(2020), S. 1–12

[53] Wang, Xintao ; Yu, Ke ; Wu, Shixiang ; Gu, Jinjin ; Liu, Yihao ; Dong,
Chao ; Qiao, Yu ; Change Loy, Chen: Esrgan: Enhanced super-resolution
generative adversarial networks. In: Proceedings of the European Conference
on Computer Vision (ECCV), 2018, S. 0–0

[54] Wang, Yingqian ; Wang, Longguang ; Yang, Jungang ; An, Wei ; Guo, Yu-
lan: Flickr1024: A Large-Scale Dataset for Stereo Image Super-Resolution. In:
The IEEE International Conference on Computer Vision (ICCV) Workshops,
2019

[55] Wang, Zhangyang ; Yang, Yingzhen ; Wang, Zhaowen ; Chang, Shiyu
; Han, Wei ; Yang, Jianchao ; Huang, Thomas: Self-tuned deep super
resolution. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2015, S. 1–8

[56] Wang, Zhou ; Bovik, Alan C. ; Sheikh, Hamid R. ; Simoncelli, Eero P.:
Image quality assessment: from error visibility to structural similarity. In:
IEEE transactions on image processing 13 (2004), Nr. 4, S. 600–612

64

Bibliography

[57] Weber, Nicolas ; Waechter, Michael ; Amend, Sandra C. ; Guthe, Stefan
; Goesele, Michael: Rapid, detail-preserving image downscaling. In: ACM
Transactions on Graphics (TOG) 35 (2016), Nr. 6, S. 1–6

[58] Weiss, Karl ; Khoshgoftaar, Taghi M. ; Wang, DingDing: A survey of
transfer learning. In: Journal of Big data 3 (2016), Nr. 1, S. 9

[59] Wolberg, George: Digital image warping. Bd. 10662. IEEE computer society
press Los Alamitos, CA, 1990

[60] Xing, Wanli ; Du, Dongping: Dropout Prediction in MOOCs: Using Deep
Learning for Personalized Intervention. In: Journal of Educational Comput-
ing Research (2018), 03, S. 073563311875701. http://dx.doi.org/10.1177/
0735633118757015. – DOI 10.1177/0735633118757015

[61] Yang, Wenming ; Zhang, Xuechen ; Tian, Yapeng ; Wang, Wei ; Xue, Jing-
Hao ; Liao, Qingmin: Deep learning for single image super-resolution: A brief
review. In: IEEE Transactions on Multimedia 21 (2019), Nr. 12, S. 3106–3121

[62] Zeiler, Matthew D. ; Taylor, Graham W. ; Fergus, Rob: Adaptive de-
convolutional networks for mid and high level feature learning In: Computer
Vision. In: IEEE International Conference On Bd. 2025, 2018

[63] Zhang, Yulun ; Li, Kunpeng ; Li, Kai ; Wang, Lichen ; Zhong, Bineng ;
Fu, Yun: Image super-resolution using very deep residual channel attention
networks. In: Proceedings of the European Conference on Computer Vision
(ECCV), 2018, S. 286–301

65

http://dx.doi.org/10.1177/0735633118757015
http://dx.doi.org/10.1177/0735633118757015

	List of Figures
	List of Tables
	Introduction
	Task Description
	Motivation
	Structure of the Thesis

	Fundamentals
	Neural Networks
	Logistic Regression
	Gradient Descent
	Forward Propagation
	Back Propagation
	Vectorization
	Activation Functions

	Deep L-Layer Neural Network
	Convolutional Neural Networks
	General Convolution
	Padded Convolution
	Strided Convolution
	Pooling Layers
	Convolution over 3D Volumes
	General 3D Convolution
	Multi-Layer 3D Convolution

	Advantages of a CNN

	Residual Networks
	Introduction to Generative Adversarial Networks
	Transfer Learning
	Resampling / Rescaling
	Image Resolution
	Upsampling
	Downsampling

	Related Work / State of the Art
	Interpolation Approaches
	Nearest Neighbour
	Bi-linear
	Bi-cubic
	Lanczos

	Deep Learning based Upsampling Approaches
	Convolutional Network Approaches
	Residual Network Approaches

	GAN Based Super Resolution Approaches
	SRGAN
	ESRGAN
	SRFeat
	ERCA

	Advanced Downsampling Approaches
	Content-Adaptive Image Downscaling
	Perceptually Based Downscaling of Images
	Rapid, Detail-Preserving Image Downscaling
	Comparing Downsampling Approaches

	Implementation
	Upsampling
	Hardware
	Training Datasets
	Pre-Training Phase for selected Generators
	Adversarial Training Phase
	SRGAN
	SRFeat
	ERCA

	Downsampling

	Evaluation
	Benchmark Test Sets
	Metrics
	Evaluation of Upsampling Models
	Set5
	Set14
	Oregon Wildlife Dataset
	Subsets of Stanford Cars Dataset
	Sample Image Sets from Upsampling
	Observations from the Study of Upsampling Models

	Upsampling specific Evaluation of Downsampling Methods
	Generators Pre-trained on DIV2K
	Generators Trained on Flickr1024
	Generators Trained on Oregon Wildlife Dataset
	Generators Trained on Stanford Cars Dataset
	Sample Image Set for Upsampling specific Downsampling
	Observations from the Evaluation of Downsampling Methods

	Discussion
	Results
	Achievements
	Drawbacks

	Conclusion and Future Work
	Bibliography

