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Abstract

Class separation of n dimensional data is a challenging task. Thus, reducing dimensionality by
projecting multivariate datasets to 2D projection space is a good approach in many cases. Star
Coordinates are a very powerful tool to visualize n dimensional data as a linear projection in
2D projection space.

In order to find projections of interest in projection space, a Python version of Composition
Operators has been implemented. This item-based algorithm allows an interactive user-based
exploration through projection space. While restricting and forcing data points to move within
projection space, different compositions of interest can be proposed.

Different heuristic extensions for Composition Operators are introduced to attempt optimally
separating projections. These heuristics try to find projection parameters that visually separate
existing classes in projection space automatically.

Qualitative and quantitative evaluation is conducted with different well-known datasets. Fur-
thermore, results are compared to a related technique of manipulating Star Coordinates. Apart
from different visualizations, metrics are used to measure the quality of separation for various
linear projections.

It can be shown that optimally separated projections do exist. However, not for every dataset,
not for every configuration and not with every provided method. Using heuristics to find better
separations automatically is — at least in most cases — successful and improves the separation
compared to an initial projection in almost every case. The different effects of the various
heuristic approaches on different data sets show that the properties of data sets are an important
component for separation.
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Chapter 1. Introduction

1. Introduction

Almost everyone produces data every day by using their phone, using their computer, checking
in at a hotel, going to the grocery, buying a ticket and many more activities. Visualizing such
data with charts, plots, graphics, or animations is an important task. It makes data-driven
insights and complex data relationships way easier to understand [16]. Outliers, trends, or even
patterns can often be found just by a look at visualized data. Furthermore, visualized data
increases an audience’s interest way more than just blank numbers and facts. In addition to
that, data visualization is, at least in most cases, a very quick way to get a first impression
of presented data. As more and more data is produced, it is an incredibly increasing market.
Global visualization market has a forecast of increasing with a Compound Annual Growth Rate
(CAGR) of 9.47% from 2017 to 2023 to 7.76 billion USD [25].

However, to find a proper data visualization for every use-case can be quite challenging, as
not every visualization gives information on every kind of data. Especially high dimensional
datasets confront an observer with the problem of not being capable of perceiving connections
correctly. Thus, lower dimensional embeddings of data are needed. Star Coordinates (SC)
[19] are a technique to embed n-dimensional data in 2-dimensional projection space. Having a
single 2-dimensional projection is often not enough to find the right visualization for used data.
Composition Operators (CO) [23], an item-based projection manipulation algorithm, can help
to find such projections by manipulating existing embeddings in SC widget. A projection of
interest is always linked to a certain purpose, such as class separation. CO are a very powerful
tool for projection manipulation, but require user-interaction.

This work aims to extend the idea of CO by a heuristic for optimally separating classes embedded
in 2-dimensional projection space by SC. The heuristic should be able to find a suitable pro-
jection in projection space to achieve this goal automatically. This would make user interaction
obsolete and abstract a given problem from its domain.

1.1. Motivation

Visualizing data in the first place does not need any knowledge about data domain. However, in
order to classify this data correctly, it is often essential to have someone with domain knowledge.
While the knowledge domain of a data scientist is data visualization, the problem domain of
underlying data is usually in the field of another knowledge domain such as medicine, agricul-
ture or other fields. Fitting domain knowledge is typically very complicated and expensive, as
multiple experts have to work on the same topic.

Thus, having an automatically class separating heuristic in projection space would also separate
domain expertise. In other words, it would decouple informatics or data visualization from
the problem domain. A domain expert could then use the heuristic independently to solve his
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Chapter 1. Introduction 1.2. Task

classification problem without further help of a data scientist.

Nonetheless, this would suggest that there is an automatically heuristic that finds optimally
separating classes in every case. Since non-separable and non-linearly separable datasets exist,
this cannot be possible for all datasets. A challenge for the resulting heuristic will be to find
suitable termination criteria for these non-separable datasets.

In terms of visual data exploration, this heuristic connects data analysis techniques with inter-
active visualization methods. It gives a good insight on the different classes, but also on the
linear dependencies between the attributes of a dataset. Furthermore, the resulting projection
gives information on the importance of a certain attribute for the classification problem.

1.2. Task

The aim of this work is to extend the idea of ’Composition Operators’ which was introduced by
Lehmann et al. [23]. Earlier work by Molchanov and Linsen [28] and Sips et al. [35] is used
to provide a good overview and reference on the topic. Different heuristics will be tested with
regard to performance and results in order to extend CO. However, before doing so, an in depth
literature research has to be done. The following points are the central aspects of this thesis:

A) Systematic and comparative literature research

• Approaches to the design of projections

• Approaches to finding (mining) separating linear embeddings

• Approaches to Visual Machine Learning (VML) based on embeddings/linear projections

B) Implementation

• Implementation of Composition Operators in Python

• Implementation of Molchanov et al. [28] in Python as a comparison

• Extension of CO with a heuristic for classes to be optimally separated in the embeddings

• Evaluating experiments (visual classification of example datasets)

A visualization of the evaluated results is also performed. If possible, the initial implementation
of CO should also be interactive. Therefore, visualization would have to take place in real-time.
Heuristic results The following questions should be answered by this thesis:

• Are there any datasets which are linear separable?

• Can it be guaranteed that a separating embedding will always be found if the dataset
allows linearly separating embedding?
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Chapter 1. Introduction 1.3. Structure of the Thesis

1.3. Structure of the Thesis

This thesis is structured as follows:

Chapter 2 contains a systematic and comparative literature research on related work. After an
introduction on Visual Analytics, an overview of non-linear and linear projections is given. In
the course of this, Star Coordinates are introduced as one of the main elements of this thesis.
An overview of different types of heuristics is followed by approaches of separation in linear
projections. The chapter is then closed with a peak at Visual Machine Learning based on
projections.

In order to understand main aspects of this work, chapter 3 gives an insight on background.
Centroids are introduced as a cluster representation technique. Furthermore, a detailed overview
on the idea of Composition Operators is provided.

Chapter 4 explains the approach to different heuristics for problem-solving. These heuristic
are presented in three rather similar variants that differ in complexity and one heuristic that
operates differently. In addition, convergence criteria are discussed and approaches are explained
mathematically.

Chapter 5 describes the implemented software. It is divided into two different versions, both of
which can be controlled with a user interface. In addition to the user interface, functional aspects
of the implementation are also explained using pseudocode. The technique by Molchanov et al.
[27] has been implemented as well and will be described briefly.

Chapter 6 contains a description of methods and metrics for evaluation. This is preceded by
a brief explanation of the choice of datasets and the datasets from UCI Machine Learning
Repository themselves. Furthermore, a reference for evaluation of the datasets with their key
values is presented. In addition to that, results for the designed evaluation are visualized,
analysed and compared to related work.

These results are discussed in chapter 7. Main achievements of this thesis are presented and
critical conclusions are drawn under given limitations for class separation tasks.

Chapter 8 closes this thesis with an outlook towards future work. In particular, the focus is on
the use of an approach with Visual Machine Learning and optimization of the existing heuristic
towards separation.
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Chapter 2. Related Work

2. Related Work

The following chapter gives an overview about related work on the topic.

2.1. Visual Analytics

’The goal of visual analytics is to turn the information overload into an opportunity’ [20].
Therefore, it is extremely important to extract relevant information from large amounts of data.
The basic aspect is to visually represent this information to allow human interaction. [20]

To do so, there is a wide range of visualization techniques available. Figure 1 illustrates some of
these techniques. Different visualizations show different contexts and focus on different aspects
within data. Thus, finding a suitable representation for data can be quite challenging.

Figure 1.: Different data visualization techniques [29]

Figure 2 shows the scope of visual analytics. It becomes clear that visual analytics is more than
just the visualization of data. Although visualization is a key component, its combination with
human factors such as interaction, cognition, perception, or presentation and data analysis such
as statistical analytics, information analytics or geospatial analytics makes it a considerably
broad field of work. [20]
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Chapter 2. Related Work 2.1. Visual Analytics

Figure 2.: The Scope of Visual Analytics [20]

However, all those components do not just coexist in the scope of visual analytics but rather
interact with each other as illustrated in Figure 3. Visual Analytics Process always starts with
data. Since incomplete or distorted data cannot be visualized reasonably, the first step is pre-
processing and transformation. [21]

Figure 3.: The Visual Analytics Process [21]
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Chapter 2. Related Work 2.2. Non-linear Projections

It is then followed up by either visual or automatic analysis methods. In case of the latter, a
model is constructed by applying data mining methods and parameters are refined by interaction
with data. Findings can be evaluated by visualizing the model and interacting with it. This
leads to an alternation between visual and automatic methods, which results in a continuous
refinement of the model. Ultimately, all these steps lead to a gain in knowledge. [21]

2.2. Non-linear Projections

Approaches to the design of projections from nD to 2D or 3D space are widely used to visualize
high dimensional data. According to the work of Sedlmair et al. [34] there are rarely any benefits
and even downsides from using 3D instead of 2D projections especially for verification of clusters
while being at higher cost. Thus, further remarks refer to 2D projections.

Projections are called non-linear if the projectors to produce the embedding are non-linear, such
as manifolds. Non-linear projection schemes support record-to-record (local) based analysis.
This means they give information on intrinsic structure as well as topological properties of data
records. There are already several approaches to project data non-linearly such as Sammon
Mapping [33], CCA [8], Isomap [37], SNE [14] or Laplacian Eigenmaps [3]. These well known
techniques work quite well for artificial datasets and local structures [39]. Newer approaches like
t-SNE [39] and UMAP [26] are also capable of dealing with real world data and preserve global
structures, at least to a certain degree.

However, this work focuses on dimension-to-dimension (global) analysis. Global analysis allows
finding patterns between different dimensions of datasets. Since these non-linear approaches
mainly focus on analysing record-to-record relations, they are not suitable for this work. Thus,
this work continues with linear projections. [23]

2.3. Linear Projections

Many techniques in the field of linear projections have been developed over the last decades.
Linear projections embed multivariate data in a projection space with a linear function. The
easiest of these schemes are bi-variate scatterplots which focus on two data dimensions at a time.
Scatterplot matrices (SPLOM) are used to analyse multivariate datasets by embedding every
possible combination of 2 dimensions in a matrix of scatterplots. However, this approach has
two downsides: The matrix of scatterplots increases quadratic with the number of dimensions
and relations can still only be observed between two dimensions at a time.

A well-known technique to embed multiple dimensions at once are Inselberg’s Parallel Coor-
dinates [17][18]. Parallel Coordinates represent multivariate data as a series of lines between
parallel axes. While it helps to perceive relationships and trends, it is very hard to interact and
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Chapter 2. Related Work 2.3. Linear Projections

identify single data points.

Other projection based multivariate visualization techniques arrange variables in radial layouts.
Two of the most popular of these techniques are RadViz [15][7] and SC [19]. Both are quite
similar in their approach, but differ by a non-linear normalization step in RadViz, which causes
non-linear distortions [32]. This leads to SC being chosen as the linear projection tool for this
work.

SC offer a way of representing n-dimensional data in 2D projection space, with each attribute
n being shown as an axis. In Figure 4 the well-known wine dataset [9] is visualized with SC
with 13 axis, as 13 different attributes were taken into account. Different colours in the figure
indicate different classes of the data.

Figure 4.: Wine dataset visualized with SC

Mathematically, SC map a data record d with n dimensions onto a 2D projection space by
multiplying with a projection matrix A:

p = A · d (2.1)

where A is a 2 × n matrix of n anchor points ai = (xi yi)T to represent the impact of each
dimension on the projection:

A =
(

x1 x2 ... xn

y1 y2 ... yn

)
(2.2)

Projecting a whole dataset D is equivalent to mapping a single data record d:

P︸︷︷︸
2×m

= A︸︷︷︸
2×n

· D︸︷︷︸
n×m

(2.3)

The relation between the different domain spaces is illustrated in Figure 5: Data D in nD data
domain is projected by a projection matrix in projection matrix domain 2nD, to a projection P
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in 2D projection domain.

Figure 5.: Considered Domains: (left) nD Data Domain, (middle) 2(nD) Projection Matrix
Domain, (right) 2D Projection Domain [23]

While any initial projection matrix A is possible, scaling it into a circle with 360◦/n degrees
between the axis with equal length is very intuitive (see Figure 4). As dimensions are linearly
connected in SC, interaction with anchor points ai of the projection matrix A allows the user
to get a dimension-wise data interpretation. The influence of an anchor point ai towards the
resulting projection is related to its norm. The larger a norm of an anchor point, the higher
the influence on the projection. In theory, the influence of a single anchor point can become
infinitely high. However, separating data by infinitely large scaled axes loses the expressiveness
and the value of the statement, as there is no practical use for the result.

Figure 6.: Wine dataset visualized with SC (non circle)

Figure 6 shows wine dataset visualized with SC with a manipulated projection matrix A. It
can be seen that some axes are extended while some are shortened. Thus, the impact on the
projection has changed. The green and the black class have less overlap than before. It can be
guessed that the attribute on axis 3 is a good attribute to classify between black and green as
it increased in size.
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Chapter 2. Related Work 2.3. Linear Projections

SC are an affine projection, which means that a projective bias will appear in a way that a sphere
in nD will become an ellipse in 2D [24]. This bias is created by the embedding function of SC.
Assumptions based on the shape of the data in 2D projection space about the shape in nD are
accordingly not possible. This problem is addressed by Orthographic Star Coordinates (OSC)
[24]. OSC limit the size of our anchor points ai by giving the following conditions:

∥x∥2 = 1, ∥y∥2 = 1, < x, y >= 0 (2.4)

with the latter being the scalar product. This technique for OSC is named Reconditioning. For
practical usage of OSC, this condition forces the average length of all axis to stay on the same
level regardless of the projection. This leads to the fact that if an axis is about to be extended,
one or more other axis must be shortened in order to get an orthographic projection. [24]

An orthographic projection can be guaranteed by choosing angles of α = 2π/n and a radius of
r =

√
2/n in Formula (2.5) [24].

(xi, yi)T = r · (sin(i · α), cos(i · α))T ; i = 0, ..., n − 1 (2.5)

with n being the number of dimensions projected. While OSC work very well for low dimension-
ality, the representation method reaches its limits when applied in extremely high dimensionality.
For n → ∞ this leads to Formula (2.6):

lim
n→∞

α = 2π/n → 0 ; lim
n→∞

r =
√

2/n → 0 (2.6)

By increasing dimensionality, orthographic projections in SC lack degrees of freedom. A stretched
area between X and Y becomes smaller and smaller until it reaches 0 [24]. Thus, the area for
projections becomes infinitely small, as illustrated in Figure 7.

Figure 7.: Limitation of decreasing radius with increasing dimensionality
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Chapter 2. Related Work 2.4. Heuristics

2.4. Heuristics

P.M. Todd defines heuristics as:

’[...]approximate strategies or ‘rules of thumb’ for decision making and problem solv-
ing that do not guarantee a correct solution but that typically yield a reasonable
solution or bring one closer to hand. As such, they stand in contrast to algorithms
that will produce a correct solution given complete and correct inputs.[...]’ [30]

This leads to the conclusion that heuristics do not take every given or missing information
into account and thus, lead to a simplified decision-making of a given problem. Therefore,
heuristics often make boundary assumptions and reduce complexity not only by the limitation
of insufficient data but also for reasons of intentional simplification. However, transferring
problems into real world scenarios with limited knowledge and time as well as uncertainty,
heuristics become important and efficient tools which can outperform other strategies of higher
complexity [13]. Especially, time is a very crucial factor in optimization problems such as flight
scheduling or load balancing in telecommunication [4].

The biggest advantage of heuristics in comparison to complete search is their rather fast compu-
tation time. It makes them applicable in fields where complete search struggles to find a solution
within an acceptable time. This is especially the case when a good approximation of the exact
solution is sufficient for the use-case.

Table 1 shows a comparison between heuristics and complete search:

heuristics complete search
computation fast slow

solution error prone exact
mathematically provable in most cases no yes

based on intuition, exploration, guesses finite set of instructions

Table 1.: Comparison between heuristics and algorithms

While heuristics are usually designed to suit a certain problem, metaheuristics have been devel-
oped to suit a wide range of applications. They are independent of the underlying optimization
problem. Metaheuristics are not to be understood as step-by-step manuals, but more as basic
ideas and approaches such as tabu search or simulated annealing [36].

Research on the topic has come up with many ’rather standard metaheuristics’ [4] which were
restrictive on their own. In order to improve their behaviour in terms of efficiency and flexi-
bility, combinations of metaheuristics and other optimization techniques have been developed
[4]. These so-called hybrid metaheuristics are capable of dealing with real-world and large-scale
problems [4]. Gallardo et al. [10] developed such a hybrid metaheuristic by combining an
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Chapter 2. Related Work 2.5. Separation of Linear Projections

evolutionary algorithm with the branch and bound method.

2.5. Separation of Linear Projections

Linear projections can pursue different goals and be of different quality. A wide range of research
has already been done on this topic.

In case of this work, projections are classified as good projections if they can be separated well.
In order to be able to determine well separable projections, a metric is needed. Sips et al. [35]
propose class consistency as a criterion to select good views. Class consistency describes the
separation and density of data towards their cluster centroids (see section 3.1).

There are different approaches to find such projections. First of all, it is possible to manually
explore through different parameter configurations. However, finding a suitable projection in
a 2nD search space is very unlikely, if not impossible. Another possibility is to investigate a
complete or grand tour through the desired projection space [2][6]. These tours are very time-
consuming, as they grow exponentially with the number of dimension. Another drawback is that
it can not be guaranteed to overlook relevant projections, as only a cross-section of all possible
projections is covered. The main idea of all these approaches is to define a certain input and
analyse whether the resulting output suits a defined criterion.

Alternatively, it is possible to turn this principle around and define a desired result before
proceeding the necessary input. This is possible with Composition Operators [23]. CO (see
section 3.2) are a user-friendly and intuitive approach of manipulating a projection.

Another approach of this kind is presented by Molchanov and Linsen [27]. They create a 2D
visualization of the different classes of a dataset and their respective centroid with SC. This
initial projection can be modified by Drag & Drop of the class centroids. When dropping a
centroid on a new position, a new projection matrix is calculated by the Least Square Solution
(LSS) of a linear equation system to satisfy the user-defined shift. This interactive technique
leads to better class separation and reduced clutter.

Teoh and Ma [38] present a method for interactive visual classification with decision trees by
using SC. The technique is based on step-wise separation of classes by a user in SC widget and
subplots of it.

All the latter techniques are based on user-interaction. According to Ankerst et al. [1] this leads
to the following advantages:

1. pattern recognition capabilities of human brain can increase the effectiveness

2. deeper understanding of the results and thus more trust into the system

3. domain knowledge by the user can lead to better results and avoid overfitting
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However, user-interaction always trades off with time and manpower. Although a user’s domain
knowledge may lead to better results, it is also possible that the results are negatively affected
by the user’s interaction. Furthermore, domain knowledge is not always existing. Nonethe-
less, advantages surpass disadvantages in most cases, which makes user-interaction a useful but
expensive tool for visual analytics.

2.6. Approaches to Visual Machine Learning based on Projections

VML based on projections or linear embeddings is a rather new field of research. The following
section will give a brief overview of published work on this topic.

Rauber et al. [31] propose the use of visual representations based on projections for predictive
feedback on classification efficacy, as well as a projection-based visual analytics methodology to
improve classification systems through feature selection.

Heidari et al. [12] applied a Random Projection Algorithm (RPA) to optimize a machine learning
model for breast lesion classification. Their approach creates a more compact feature space that
reduces correlation and redundancy. This results in an optimal feature vector with significantly
higher classification performance.

Chu et al. [5] present a method for real-time electromyogram (EMG) pattern recognition. An
extracted feature vector of the EMG signal is then linear-non-linearly projected by composing
principal component analysis (PCA) and self-organizing feature map (SOFM). After that, multi-
layer perceptron (MLP) is used as classifier. As a result, recognition accuracy is more dependent
on class separability of the projection than on the classifier itself.

With regard to this work, an extension through the use of VML could be useful. Therefore,
feature vectors are extracted from projection space and validated with training data. Good
separations in the projection space are essential for designing classifiers with that approach.
However, having ideally separated classes in projection space is even better.

12



Chapter 3. Background

3. Background

In the following part of the work, basic terminology will be explained so that later explanations
can be followed.

3.1. Cluster Representation

An alternative to displaying each individual data point of a class are the so-called centroids.
These centroids are in the mathematical centre of a class. They can be calculated by averaging
all points of a class. Centroids C in SC are points embedded in 2D which result in the sum of
all x- or y-components of a class divided by the number of instances N belonging to the class
as shown in Formula (3.1):

C =
[∑

X

N
,

∑
Y

N

]
(3.1)

Taking a closer look at Figure 4 three different centroids can be calculated. These centroids are
shown in Figure 8 marked in red colour. For a better overview, each section shows only the
projection points of their respective class.

Figure 8.: Centroids for wine dataset visualized with SC

As centroids represent a whole class of points, it is easy to manipulate data points class-wise by
manipulating their centroids.

3.2. Composition Operators

The following statements about Composition Operators are derived from notes by Prof. Dr.-
Ing. habil. Dirk J. Lehmann [23]. CO are a direct and explicit projection point manipulation
technique for linear projections. In this work, they are used to interactively transform an initial
projection of a nD dataset linearly embedded with SC into a novel SC projection. Thereby, user
constraints influence this projection.

13
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Considering SC, a projection is created by the free choice of a projection matrix A. In contrast,
CO reverse this process and generate projections using a freely definable projection P . This
means that the degree of freedom shifts from A to P . Thus, CO calculate a new projection
Matrix A (see Formula (2.2)) with a given projection P and their respective dataset D under
certain user constraints.

The basic idea of CO is to interactively shift a point or a set of points into a freely chosen
direction vector. The algorithm then tries to create a new projection by variation of projection
parameters to realize this shift. While the user can define those shift-able points, it is also
possible to set points as sticky. These points are supposed to remain in their position even with
a variation of projection parameters. Projection points that are neither considered shift-able nor
sticky are not taken into account when calculating a new projection matrix. Furthermore, CO
can be used interactively to find a projection of interest. While doing so, it is also possible to
change the status of a point from sticky to shift-able and the other way around.

However, not every manipulation can be realized in every situation which gives the assumption
that it does not exist. CO then reflect the structure of data by a least-square solution.

There are three different shifting operations available for CO:

• one-point shift

• shift-able sets

• shift-able sets vs sticky sets

They are illustrated in the following Figure 9. The predicted movement of the projection points
is indicated by arrows next to them. The blue shift-able points should move right towards their
desired location pm respectively Pm. The red sticky points on the other hand should not move
at all.

Figure 9.: CO: (left) one shift-able point pm, (middle) a set Pm of shift-able points, (right) with
an additional set Pq of sticky points [23]

The shift ∆p = (∆px ∆py)T that moves shift-able projection points p to their new position p

are given by user input. It contains information about the corresponding shift in x- (∆px) and
y-direction (∆py). To turn these shifts into a new visualization the projection is manipulated
by calculating a new projection matrix A = A + ∆A depending on the modified data. The
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resulting projection matrix A leads to new projection points p = p + ∆p by multiplication with
their respective data record d. CO are reversible. Thus, a shift in the opposite direction with
the same length results in the original representation again.

Before getting into the calculation of projection manipulation, a few mathematical notations
have to be clarified.

1n = (1 1 ... 1)T is defined the one column vector, In is an n × n identity matrix. ∥a∥2 is the
euclidean norm of a column vector a calculated as:

∥a∥2 =

√√√√ n∑
i

a2
i (3.2)

A dataset D contains m data records d of length n which is the amount of attributes in the
dataset. It is defined as:

D = (d1 d2...dm) with d = (d1 d2...dn)T (3.3)

In order to define sticky and shift-able points, selected data records d are relabelled as mi for
shift-able and qj for sticky points and saved as n × q matrix M respectively n × k matrix Q:

M = (m1 m2...mq) (3.4)

Q = (q1 q2...qk) with M ∩ Q = ∅ (3.5)

Their corresponding projections are Pm respectively Pq.

With D′ being all data records that are neither sticky nor shift-able, our dataset D is composed
of the following components:

Data︷︸︸︷
D︸︷︷︸

n×m

= D′︸︷︷︸
n×(m−q−k)

∪
Shift-able Data︷︸︸︷

M︸︷︷︸
n×q

∪
Sticky Data︷︸︸︷

Q︸︷︷︸
n×k

(3.6)

The control parameter ε addresses the problem of shift lack. Shift lack describes the phenomenon
that points with a smaller norm can not be shifted as far as points with a larger norm could be
shifted by the same shift vector ∆p. By setting ε to a value between 0 and 1, norm equalization
can be performed in order to map all points to the largest norm ε = 0.5, to the smallest norm
ε = 0 or anything in between that. However, in this work, norm equalization is not performed.
Thus, Mε equals M .
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Another user parameter δ controls the ratio between shift and stickiness. The weightings are
defined by two polynomials f1

δ and f2
δ of degree 2 (see 3.7).

f1
δ = 3 · δ − 2δ2, f2

δ = 1 − 4 · δ + 4δ2 (3.7)

Setting this parameter to a value between 0 and 1 leads to different weightings. As they do not
follow a linear distribution, three key values are presented:

• δ = 0 → maximum stickiness

• δ = 0.5 → maximum shift

• δ = 1 → equally weighted

3.2.1. One-point Shift

A one-point shift consists of a single data record d selected as shift-able point m. At the same
time, no other point is marked as sticky. Thus, the change ∆A of the resulting projection matrix
A is only dependent on m and the user given shift vector ∆p as shown in Formula (3.8).

A =
( 1

1 + ∥m∥2
2

)
∆p · mT + A (3.8)

3.2.2. Shift-able Sets

When shifting not only one point but a set of points, not every point mi can be shifted exactly to
mi +∆p due to the previously mentioned shift lack. Since there are no sticky points (Q = ∅) the
main goal of this composition operator is to get a best possible projection of mi + ∆p regardless
of all other points D′.

The optimal projection composition operator for shift-able sets is calculated by Formula (3.9)
and Formula (3.10).

Aε =
[
∆p · (Mε · 1q)T · H−1

ε

]
+ A (3.9)

with

Hε = (MεMT
ε + In) (3.10)
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3.2.3. Shift-able Sets vs Sticky Sets

CO for a set of shift-able points M while having a set of sticky point Q try to achieve two goals:

(A) Keep a set Q as close as possible to their initial position.

(B) Shift a set M as close as possible to a desired location.

They do not necessarily contradict each other. However, if they do so, weighting can be controlled
by the prior introduced parameter δ.

In case of multiple iterations of shifts, there are two different variants of calculating the respective
Composition Operator. One without and one with a memory function for the sticky points Q.
Hereby, memory divides the definition of initial position into the starting position of the prior
shift (without memory) and the position before any shift has happened at all (with memory).
That means that the Composition Operator with memory always keeps the starting configuration
of sticky points as a reference.

Formula (3.11) with Formula (3.13) shows the Composition Operator without memory and with
control ε and blending δ.

A
− =

[
f δ

1 · ∆p · (Mε · 1q)T · H−1
εδ

]
+ A (3.11)

Formula (3.12) with Formula (3.13) shows the Composition Operator with memory, control ε

and blending δ.

A
+ =

[
f δ

1 · ∆p · (Mε · 1q)T + f δ
2 · PqQT ) + A(IN + f δ

1 · MεMT
ε

]
H−1

εδ (3.12)

with

Hεδ = (f δ
1 · MεMT

ε + f δ
2 · QQT + In) (3.13)

For any additional information on CO as well as proofs of the formulas, please contact Prof.
Dr.-Ing. habil. Dirk J. Lehmann.
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4. Approach

The following chapter describes the different approaches to define a heuristic that manipulates
a given projection into a projection of optimally separated classes. The central idea of all
these heuristics is to maximize the visual distance between the involved classes. Therefore, all
variants use the idea of centroids as a representation for classes (see chapter 3.1). Thus, the
actual distance between two classes will be measured by the distance between their associated
centroids. Furthermore, a central centroid CC which is calculated by the mean of all other
centroids is defined. This central centroid is an auxiliary quantity to calculate the direction of
the shift vector ∆p.

This shift vector ∆p is influenced by three different components.

1. distance dij between a chosen centroid Ci and its nearest centroid Cj

2. distance diC between a chosen centroid Ci and the central centroid CC

3. randomly generated noise factor, following a normal distribution between -1 and 1

While the first component will always be the defining element for the shift, the impact of the
second and the third component are slowly fading with 1

n while iterating the heuristic. This
reduces the impact of randomness towards convergence.

The shift vector ∆p is calculated by the following Formula (4.1).

∆p = Ci − Cj︸ ︷︷ ︸
dij

+ 100
100 + n

· Ci − CC︸ ︷︷ ︸
diC

+ 100
100 + n

· noise (4.1)

The result is normalized, hence ∆p has a length of 1 regardless of the calculated distances.
Nonetheless, the direction of ∆p is directly influenced by the magnitude of the distances. As the
goal is to maximize distances between the centroids, short distances have to be weighted more
than longer distances for the resulting shift. This aspect is not covered by the pure distance
calculation. Thus, dij and diC are transformed to vij and viC by re-scaling them, as shown in
Formula (4.2).

∆p = ∥diC∥2
2

(∥dij∥2
2 + ∥diC∥2

2)
· dij︸ ︷︷ ︸

vij

+ 100
100 + n

· ∥dij∥2
2

(∥dij∥2
2 + ∥diC∥2

2)
· diC︸ ︷︷ ︸

vij

+ 100
100 + n

· noise (4.2)

Figure 10 shows an example with three different centroids. The centroid C2 shall be shifted.
Therefore, the distances d12 between C2 and the nearest other class centroid C1 and d2C between
C2 and the central centroid CC are calculated. The direction vectors v21 and v2C imply the
impact of the respective distances towards the resulting direction. The combination of these
two vectors leads to the actual shift ∆p for C2.
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Figure 10.: Calculation of shift vector ∆p in the heuristic

To use CO, the configuration of the points must be carried out in addition to the direction vector
∆p. Hence, all projection points of a class that shall be shifted are marked as shift-able. Points
of all other classes are marked as sticky. In case of a single point shift, only the point that shall
be shifted is marked as shift-able. All other points, also those from the same class, are marked
as sticky.

In the following sections, four different variations of this basic idea for a heuristic are described.
Whilst some of them follow rather random instructions, others follow a more analytical approach.

4.1. Variant 1 - Random Selection Shift

The first and simplest approach randomly picks a centroid Ci and shifts it away from its closest
other centroid Cj and the central centroid CC . Thus, this variant is named Random Selection
Shift (RSS). In order to find out which other centroid Cj is the closest to Ci all distances are
computed, and the minimum is selected.

4.2. Variant 2 - Order Selection Shift

In difference to RSS, centroids are now moved in a given order. This leads to the name Order
Selection Shift (OSS). Beginning with the centroid of the class with the lowest number (0 in
most cases), centroids are shifted clockwise one after the other. When every class was shifted,
it starts all over again. A centroid Ci is shifted away from its closest other centroid Cj and
the central centroid CC . In order to find out which other centroid Cj is the closest to Ci all
distances are computed and the minimum is selected.
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4.3. Variant 3 - Minimum Selection Shift

To determine which centroid should be moved, all distances dij between two different centroids
are calculated. From these distances, the smallest single difference min(dij) between two cen-
troids Ci and Cj is sought. This leaves open two possible candidates. Therefore, the total
distances di,total of Ci and Cj (see Formula (4.3)) to all other centroids are calculated as a sec-
ond criterion. The one with the smaller di,total is going to be the shifted centroid. Thus, this
variant is called Minimum Selection Shift (MSS).

di,total =
∑

k

∥Ci/j − Ck∥ with k = 1, 2, ..., number of centroids ̸= i/j (4.3)

Taking a look back at Figure 10 the smallest distance min(dij) within this constellation is d12.
The third centroid C3 is slightly nearer to C2 than to C1 which means that C2 is the chosen
centroid.

4.4. Variant 4 - Point Selection Shift

Instead of trying to maximize the distance between the cluster centroids, this variant tries to
increase cluster density by moving single points towards their associated centroid. In order to
select a point, all distances between projection points and the centroid of the class they belong
to are computed. The maximum of all these distances diC,max is the projection point pi being
shifted towards its centroid. Therefore, all other projection points are marked as sticky. By
shifting a projection point towards its centroid, class density is being increased. As only a single
point is shifted in this case, this variant is called Point Selection Shift (PSS).

Figure 11.: Calculation of shift vector ∆p in PSS

Taking the example from above, centroids C1−3 are visualized with their associated projection
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points in Figure 10. Measuring all the distances (dotted lines) leads to the result, that a point
of the blue class has the maximum distance from its centroid C1. Thus, this point is shifted
towards C1.

Besides shifting a selected projection point pq,sel straight towards its centroid Cq, Gaussian noise
from -1 to 1 is added to vary the static shifts for new solutions. The actual shift can be calculated
with Formula (4.4).

∆p = ∥Cq − pq,sel∥ + noise (4.4)

4.5. Termination Criteria of the Heuristic

Heuristics do not have a proof of convergence in general. Therefore, these procedures also lack a
guarantee for finding any solution at all. From this insight, it can be deduced that termination
criteria must be defined. [40]

The improvement of visualization by the heuristics can be measured by different approaches.
One follows the idea of maximizing Distance Consistency (DSC) as presented in section 2.5.
Another one is to maximize the distance of all class centroids. A last approach tries to minimize
the distance between data points and their associated centroid, to increase the class density.
Using these metrics leads to several termination criteria that can be defined for these heuristics.
The simplest termination criterion for the heuristic is a fixed number of iterations n. This works
for every presented variant. However, there are more complex termination criteria.

One of these is the distance between all centroids dc,total. The total distance between all centroids
dc,total is calculated by Formula (4.5).

dc,total =
n−1∑
i=0

n∑
j=i+1

∥Ci − Cj∥ with i, j ∈ centroids (4.5)

As long as the total distance between the centroids dc,total is increasing with every iteration,
the heuristic should not terminate. A greater overall distance comes from greater individual
spacing of the centroids, which allows for better separation. However, there are scenarios where
for example only two classes are separated. A shift would always increase the distance between
those two classes. Since the strategy of PSS counteracts this measure in its approach, it cannot
be applied as a criterion for this heuristic. This leads to the conclusion that this criterion is not
sufficient as the only one.

Another termination criterion is Distance Consistency [35]. Distance Consistency describes the
ratio of projection points which are closer to the centroid of their class than to the centroid of
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any other class to the total number of projection points. A point that is closer to the centroid
of its class than to the centroid of another class is considered distance consistent. A point that
is closer to the centroid of another class is not distance consistent. With pq,i being the points
i of centroid Cq, Ck being all other centroids and N being the number of all projection points
and M the number of all centroids, DSC can be calculated by Formula (4.6).

DSC = |{pq,i : ∥pq,i − Cq∥ ≤ ∥pq,i − Ck∥ ∀ k ∈ |{M}|}|
N

(4.6)

While other termination criteria are indirect metrics, increasing DSC leads to increasing sep-
arability. A value of DSC = 1 indicates an optimally separable projection and terminates the
heuristic. However, for datasets with a lower amount of instances, DSC often does not change
in every iteration.

Especially to measure and control the quality of PSS, a metric to control class density has to be
used. The idea of Distribution Consistency as calculated in [35] does not quite fit the use-case.
Thus, another metric to measure class density is used in this work. The distances between all
points of a class towards their centroid is added up to a total distance di,c,total. The smaller
this distance gets, the nearer points are towards their centroid, the higher class density is. For
easier understanding, this measure is called Centroid Density (CD). Taking the notations from
Formula (4.6), CD is calculated by Formula (4.7).

CD =
∑

q

∑
i

∥Cq − pq, i∥ (4.7)

It is not very helpful to use these criteria as hard factors for termination, since local minima
could prevent the heuristic from finding a better solution. Even though a single criterion has not
increased, the overall projection can lead to a better separability. Thus, a Penalty Threshold
(PT) is introduced. In case not every termination criterion is fulfilled at once, a penalty counter
(τ) is increasing until reaching the PT. However, an increase of DSC resets τ to zero, as the
separability has improved.

In summary, the heuristic is to terminate when:

• a fixed number of iterations n has been processed

• dc,total and DSC decreased while CD increased from the last iteration

• penalty counter τ has reached the PT

• DSC reached 1
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5. Implementation

This work is implemented in Python (Version 3.9), as it is a popular programming language with
many useful packages, libraries, and frameworks especially for data science. The user interface
was built with PySide6, which is the Python version of Qt. Qt is a well known user interface
tool that is able to perform drag & drop actions. Furthermore, the principle of signals & slots is
very intuitive to use. Datasets are handled with pandas. Pandas is a powerful and useful tool by
providing many built-in data manipulation functions. Mathematical operations are done with
numpy, because arrays are faster and more compact than lists. Additionally, numpy has a lot of
built-in functions for matrix and vector operations. Basic mathematical operations are provided
by math package.

5.1. Description of the Front End

Two different user interfaces have been implemented. One version to explore and interact with
projections and get to know CO. The other one to set a framework to configure the application
of heuristics to selected datasets.

5.1.1. Composition Operators - Basic application

In the sense of Visual Analytics Process (see section 2.1) it is important to get insights on data
and the overall behaviour of CO. Thus, a basic application for user interaction was implemented
as a QMainWindow (see Figure 12).

The user interface can be described as follows: On the left side there are different control
elements, while on the right side the visualization of data is shown. Focusing on the left side
of the interface, data can be selected by pressing the button "Choose .data file". By pressing
"Choose .header file" the associated header can be chosen. Upon selection the nearby label
updates the given path of the respective files. "Sticky" defines the weighting parameter δ (see
section 3.2) by either moving the slider or entering a value into the line edit. Default value for
δ is 1. Below, an option for orthographic scaling (see section 2.3) can be toggled by using the
checkbox. By pressing the button "Start" prior configuration is taken to create a visualization
on the right side of the interface.
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Figure 12.: User interface for CO (interactive shifts)

The visualization is organized as a QGraphicsView in a QGraphicsScene. Points are drawn as
QGraphicsEllipseItem while lines are drawn as QGraphicsLineItem. However, since a QGraph-
icsScene does not behave like a Cartesian coordinate system, projection points have to be trans-
ferred to the visualization plane. The connection between Cartesian coordinates and visualiza-
tion plan is illustrated in Figure 13.

Figure 13.: Projection from Cartesian coordinates to visualization plane
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Thus, the centre of visualization plane is defined as [X0, Y0]. These are derived from width
(X0 = width

2 ) and height (Y0 = height
2 ) of QGraphicsScene. X and Y values of projection points

can then be transferred by the following equations (5.1) and (5.2). The formula for Y differs
because the y-axis is mirrored relative to the coordinate system.

X = X0 + X0 · Xp (5.1)

Y = Y0 − Y0 · Yp (5.2)

A user can interact with the resulting visualization. Therefore, different actions can be per-
formed.

• changing status of projection points between sticky, shift-able and none by double-clicking

• create a shift vector ∆p by ’Drag & Drop’ of one projection point

• reload the configuration by pressing the ’Start’-button again

While the class of a projection point is represented by its filling, the current status is indicated
by the colour of the border (see Figure 12). Green borders indicate shift-able points (top-right
corner, points of black class), red borders indicate sticky (bottom-left corner, points of green
class) and black borders indicate that points are neither shift-able nor sticky. Drag & drop and
thus creating a shift vector ∆p is only available for non-sticky points.

As it is nearly impossible to always hit a data point perfectly on spot, detection of a click is
realized by searching for data points within a certain radius r around the cursor position. In
order to enable ’Drag & Drop’ for elements a class GraphicsScene with the necessary signals and
slots is inherited from QGraphicsScene, as Qt does not support this operation by default (Qt
defines ’Drag & Drop’ as a data transfer operation – as often used for uploads). Respective slots
(mouseDoubleClickEvent, mousePressEvent and mouseReleaseEvent) have to be overridden for
an inherited class GraphicsEllipseItem (from QGraphicsEllipseItem). The connected signals are
defined in an inherited class MainWindow (from QMainWindow).

The drop of an item at a position that is not the starting position, emits the signal to proceed CO
technique with the current configuration of the projection. The user input of ∆p is calculated
by the difference between the starting position on an emit of the drag signal and the ending
position on an emit of the drop signal.

Applying ∆p always takes place in visualization plane. Projection of data starts in Cartesian
coordinates. This transition has to be reverted into Cartesian projection points by inverting the
initial scaling of a new projection matrix Acartesian. Afterwards, the dataset is embedded into
Cartesian SC with the new projection matrix Acartesian. Then it has to be transitioned back to
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visualization plane to update the visualization in every iteration. The process is illustrated in
Figure 14.

Figure 14.: Process of an iteration of visualization with a new projection matrix A

5.1.2. Composition Operators - Heuristic Application

To apply the implemented heuristics and present the results accordingly, a second version of
the user interface has been implemented. For this purpose, some features have been added and
some have been deleted. The first part of the left side of the user interface is exactly the same
as described in the section above. However, the second part extends the user input by relevant
parameters for the heuristics.

A dropdown menu gives four different options to set a heuristic variant. These are equivalent to
the variants presented in chapter 4. Furthermore, the number of iterations n for the heuristic can
be defined by typing any number n ∈ N. The default value is 1 (step). By pressing the button
’Proceed heuristic’ n iterations of the chosen heuristic are proceeded and the result is shown
in the visualization on the right. A continuous counter within the heuristic allows additional
proceedings (even with a different amount of iterations n).

On the right side of the interface, interactive elements have been removed. Therefore, it is used
exclusively for visualization. The resulting user interface is shown in Figure 15.
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Figure 15.: User interface for CO (heuristic use)

5.2. Description of the Back End

The actual functionality of the software is triggered by the emit of the signal by the respective
start button object. Functionality is handled within the connected slot. The following section
will give an overview about the different heuristics and the functions that are used to realize
them. Furthermore, the implemented penalty system will be explained. The implemented logic
to handle user interface input will not be described in detail.

5.2.1. Description of Heuristics

In the following, pseudocode for MSS (see Figure 16) will be discussed. Since the general
structure of the heuristics is quite similar, pseudocode for the other implemented heuristics can
be found in Appendix A. Differences are marked with green color for the corresponding lines.

The general structure and process of the heuristic can be understood through the corresponding
comments in the pseudocode. By using functions, the process is linear and easy to follow. For
this reason, the remainder of this section concentrates on the functions behind the heuristics
in chronological order. These contain the essential mathematical operations for carrying out
the shifts. These functions are calc_centroid_distances(), calc_dist_p_to_assoc_centroid(),
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calc_dsc(), selecting_shifting_class() and calc_dp(). Some of them operate in a similar way
but for different subjects. Thus, not every pseudocode will be shown in the following description.

Heuristic 1: Minimum Selection Shift - MSS
1 function heuristic_order_selection_shift(df_p, iterator, num_classes):

Data: df_p is the dataframe in projection space, iterator is the current iteration
step, num_classes is the amount of different classes in the dataset

Result: dp shift vector, selected_class to be shifted, calculated DSC_value,
calculated CD_value, calculated total_dist

/* extract star coords and class of data to a new dataframe */
2 df_star = df_p[[’X’,’Y’,’class’]]

/* calculate class centroids and save them in a new dataframe */
3 df_centroids = df_star.groupby(’class’, sort=True).mean().reset_index()

/* calculate coordinates of the central centroid */
4 central_centroid = df_centroids[[’X’, ’Y’]].mean()

/* call a function to calculate all distances between centroids */
5 df_distances = calc_centroid_distances(df_centroids)

/* calculate the distance from each point to its associated centroid */
6 df_centroid_distances = calc_dist_p_to_assoc_centroid(df_centroids, df_star)

/* calculate CD, DSC and total_dist for result */
7 CD_value = df_centroid_distances[’distance’].sum()
8 DSC_value = calc_dsc(df_centroids, df_star)
9 total_dist = df_distances[’distance’].sum()

/* find the minimum distance between two class centroids */
10 min_dist_idx = df_distances[’distance’].idxmin()
11 min_class1 = df_distances.loc[min_dist_idx, ’class1’]
12 min_class2 = df_distances.loc[min_dist_idx, ’class2’]

/* select the class that is to be shifted */
13 selected_class, other_class = select_shifting_class(df_distances, min_class1,

min_class2)
/* calculate the new shifting vector dp */

14 dp = calc_dp(df_centroids, selected_class, other_class, central_centroid, num_iter)

Figure 16.: Pseudocode for MSS

The function calc_centroid_distances() calculates the euclidean distance between every combi-
nation of two different classes and saves them into a new dataframe. The pseudocode for this
function is shown in Figure 17.
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1 function calc_centroid_distances(df_centroids):
Data: dataframe df_centroids with all positions of the centroids in projection space
Result: dataframe df_distances with all distances between class centroids
/* create dataframe for results */

2 df_distances = pd.DataFrame(columns=[’class1’, ’class2’, ’distance’], dtype=float)
/* index for writing to df_distances */

3 idx = 0
/* calculate euclidean distance for every combination of centroids */

4 for index in list(combinations(df_centroids.index, 2)) do
5 p1 = [df_centroids.loc[index[0], ’X’], df_centroids.loc[index[0], ’Y’]]
6 p2 = [df_centroids.loc[index[1], ’X’], df_centroids.loc[index[1], ’Y’]]
7 df_distances.loc[idx, ’class1’] = index[0]
8 df_distances.loc[idx, ’class2’] = index[1]
9 df_distances.loc[idx, ’distance’] = math.dist(p1, p2)

/* increase the index before going through the next iteration */
10 idx = idx + 1
11 end

Figure 17.: Function calc_centroid_distances

The function calc_dist_p_to_assoc_centroid() proceeds according to the same scheme. The
difference is that it does not calculate the distance between the individual centroids, but the
distance between points and their associated centroids. This leads to a dataframe that consists
of every single data point linked with its associated centroid and the distance between those two
points.

The functionality of calc_dsc() can be derived from Formula (4.6). Distances between a point
and all centroids of the dataset are calculated, and the minimum distance is chosen. Depending
on which point is closest to which centroid, the function calculates a score between 0 and 1.

The function selecting_shifting_class() calculates the total distance of the two nearest centroids
to all other centroids in the projection and, based on the result, sets one of the two classes as
selected_class and the other as other_class.

Finally, the function calc_dp() is an exact representation of Formula (4.2). The result of this
function is the shift vector ∆p. Since operations of this function are simple linear steps, this
function needs to further explanation.

5.2.2. Description of Penalty Counter Calculation

A pseudocode for the function handle_penalty_counter() is given below (see Figure 18). This
function manages the calculation of the current penalty τ . The old and new values of DSC, CD
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and total_dist (td) are passed to the function. The implemented conditions of this function are
derived from the explanations in section 4.5.

1 function handle_penalty_counter(cnt, DSC_o, DSC_n, td_o, td_n, CD_o, CD_n):
Data: counter cnt for the current penalty τ , old and new values for DSC, TD and

CD to compare towards termination criteria
Result: new value cnt for τ

2 if DSC_n ≤ DSC_o /* DSC decreased */
3 then
4 cnt = cnt + 1
5 end
6 if td_n ≤ td_o /* or td decreased */
7 then
8 cnt = cnt + 1
9 end

10 if CD_n ≥ CD_o /* or CD decreased */
11 then
12 cnt = cnt + 1
13 end
14 if DSC_n > DSC_o /* DSC increased */
15 then
16 cnt = 0
17 end

/* DSC did not change and CD decreased or td increased */
18 if (DSC_n == DSC_o) & ((CD_n < CD_o) | (td_n > td_o)) then
19 cnt = 0
20 end
21 if (CD_n < CD_o) & (td_n > td_o)/* CD decreased and td increased */
22 then
23 cnt = 0
24 end

Figure 18.: Function handle_penalty_counter
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6. Evaluation

This chapter deals with the evaluation of the developed heuristics. Thus, metrics and methods
are introduced and explained. Beforehand, the datasets used are presented in detail.

6.1. Datasets Used for Evaluation

Different datasets have been used to evaluate the implementation described above. Selection
criteria have been different amounts of almost exclusively or exclusively numeric attributes,
number of instances, different number of classes, no missing values, a focus on classification
tasks and already classified data. Furthermore, comparability to related work such as [23] or
[28] has been one of the most important criteria for a dataset to be chosen. All datasets have
no missing values. They can all be accessed via UCI Machine Learning Repository [9].

In order to prepare datasets for evaluation, they have been split into a data file (dataset.data)
and a header file (dataset.header). If not already within the dataset, every dataset has been
extended by a column ‘class’ that represents the classification of each instance. To simplify
processing, the class names were manually renamed with ascending numbering.

Header files contain the name of the columns in the first row and their corresponding data type
in the second row. Numeric data types are named as ‘number’, the column ‘class’ is marked as
‘classifier’. All other data types, e.g. string, are named as ‘other’. The following Table 2 shows
the allocation of data types for ecoli.header. Entries in the header file are divided by comma, as
they are read as a .csv formatted file.

seq_name mcg gvh lip chg aac alm1 alm2 class
other number number number number number number number classifier

Table 2.: Allocation of data types for ecoli.header

Before delving into each individual dataset, Table 3 provides a brief overview of their key data.

dataset instances attributes numeric attributes classes
iris 150 4 4 3

ecoli 336 8 7 7
wdbc 569 32 30 2
wine 179 13 13 3
yeast 1484 8 7 9

statlog 2000 36 36 6(7)

Table 3.: Key data on used datasets
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6.1.1. Iris

Iris dataset is one of the most popular datasets which was contributed by R.A. Fisher. It contains
150 instances with 4 attributes. All of them are numeric. They are split into 3 different classes
with 50 instances per class.

6.1.2. Ecoli

Ecoli dataset contains data on protein localization sites. It contains 336 instances with 8 at-
tributes. 7 of them are numeric. The instances are split into 7 classes with different amounts of
instances per class.

6.1.3. Wdbc

Wisconsin diagnostic breast cancer (wdbc) dataset contains data about characteristics of cell
nuclei that are taken from breast mass. The dataset contains 569 instances with 32 attributes.
30 of them are numeric. The instances are split into 2 classes with different amounts of instances
per class.

6.1.4. Wine

Wine dataset is a well-known dataset containing chemical analysis of different wines in order to
determine their origin. It contains 179 instances with 13 attributes. All of them are numeric.
The instances are split into 3 classes with different amounts of instances.

6.1.5. Yeast

Like ecoli, yeast contains data on protein localization sites. It contains 1484 instances with 8
attributes. 7 of them are numeric. The instances are split into 9 classes with different amounts
of instances per class.

6.1.6. Statlog

Statlog dataset contains data on ’[..]multi-spectral values of pixels in 3x3 neighbourhoods in a
satellite image, and the classification associated with the central pixel in each neighbourhood’
[9]. It contains 2000 instances with 36 attributes. All of them are numeric. The instances are
split into 7 classes with different amounts of instances. However, since class 6 does not have any
instances included, statlog is considered having 6 classes.
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6.2. Design of Evaluation

Evaluation of the heuristics will consist of three different parts:

1. Comparison of the four presented heuristics with a default setup

2. Analysis of behaviour of the same heuristics by changing different parameters

3. Comparison of the results with other results e.g. [27]

These aspects will be discussed on the different datasets with different metrics and visualizations.

6.2.1. Metrics of Evaluation

Apart from visualization, a few aspects can help to measure the quality of the used heuristics.
While some of these aspects are metrics as a direct measure of the outcome of the heuristics,
other aspects deal with the reliability and reproducibility of the results.

Distance Consistency

DSC is a metric to measure how many projection points of a class are closer to its own centroid
than to the centroid of another class (see section 4.5). A projection that has a DSC value of 1
is fully separated, as all projections points lie closest to their own centroid. However, even for a
DSC below 1, fully separation can be achieved. Thus, DSC is especially meaningful for compact
classes. Figure 19 illustrates an example for optimal separation of classes while DSC is smaller
than 1.

Figure 19.: Example for optimally separated data with a DSC below 1

In the following evaluation, the value is given as a percentage for better readability. Thus, 1 is
equivalent to 100%.
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Centroid Density

CD is an introduced metric to measure the distance of projection points towards their associated
centroid (see section 4.5). The distance is the sum of all euclidean distances between projection
points and their associated centroid. A lower distance CD leads to higher density.

∆CD = CDstart

CDend
· 100% (6.1)

For evaluation, the change of density ∆CD will be measured by forming the dividend between
the starting CDstart of the initial projection and the resulting CDend of the final projection (see
Formula (6.1)). A value of more than 100% means that density has increased, a value under
100% indicates a decrease of overall density.

Centroid Distance Change

The total distance between the centroids of the classes dc,total can be measured by the sum
of the euclidean distances between every combination of two centroids in projection space. To
compare the result of the heuristics, the change of this distance Centroid Distance Change (CDC)
is measured as:

CDC = dc,total,end

dc,total,start
· 100% (6.2)

Despite a greater distance (CDC > 100%) between the centroids, better separability is not
guaranteed. It can also not have increased or even decreased depending on the distribution of
points. Therefore, CDC is more of an indicator than a direct measure for separability.

A combination of CDC and ∆CD would operate like Fisher’s method of scoring as described
in [11]. Since it is unclear in what way the two different metrics interact or contradict for
information on quality of an outcome in this work, they are measured separately.

Convergence and Reliability

Since heuristics do not guarantee a solution, termination criteria have been defined in section
4.5. To test these, a sample of runs of a heuristic is performed. This sample can then be analysed
by its estimation of the expected value and the sample variance. The sample variance of the
number of iterations gives an indication of the quality of the termination criteria. Furthermore,
the sample variance of DSC can be used as a measure for reliability of the presented solution.
The estimation of the expected value X, sample variance s2 and the variance coefficient v, a
resulting ratio, are mathematically defined as:
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X = 1
n

n∑
i=1

Xi ; s2 = 1
n − 1

n∑
i=1

(Xi − X) ; v = s

X
(6.3)

A low sample variance indicates high reliability of presented results. Accordingly, a result is a
good representative for the set of all results. Variance coefficient v can be used to get information
on the relative variance, as it does not depend on the actual size of X. Since different datasets
are expected to result in different magnitudes of variance, the use of this measure is beneficial.

6.2.2. Initial Configuration for Evaluation

For comparison, an initial configuration of a dataset with equally distributed axes of the same
length is created. Figure 20 illustrates the initial projection in SC for all used datasets.

Figure 20.: Datasets visualized in their initial SC projection
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The following Table 4 summarizes key values of the initial projection for each dataset.

dataset DSCstart CDstart dc,total,start

ecoli 63.88% 11636 3073
iris 89.93% 3585 340

statlog 21.06% 65743 112
wdbc 86.27% 22820 79
wine 72.32% 7703 201
yeast 27.44% 44547 2613

Table 4.: Key values of the initial projection for each dataset

Based on the values shown in Table 4 and the visualizations illustrated in Figure 20 it can be
said that the used datasets differ greatly from each other in every measured aspect. These key
values of the initial projection depend on the properties of the data sets. The values for DSC
range from 21.06% to 89.93%. CD for statlog is almost 19 times the value for iris dataset. The
distance between the centroids ranges from 79 to 3073. The dimension of individual key values
does not allow any conclusions to be drawn about the dimension of other key values. This shows
that the values in absolute numbers are not decisive, but rather their relative change must be
considered as a metric for separation.

6.2.3. Comparison of Heuristics

In order to get a first comparison between the heuristics, a test configuration has been set. All
datasets have been tested with the same configurations throughout this example. Table 5 shows
the settings.

Max. Number of Iterations Penalty Threshold Orthographic
1000 100 Yes

Table 5.: Standard configuration for heuristic comparison

6.2.4. Behaviour with Different Parameters

After comparing the presented heuristics with a standard configuration, they will be tested with
modified configurations in the following section. In addition to modifying termination criteria,
orthography will be used or not used in different scenarios. Since overall results for MSS are
superior to those of RSS, OSS and PSS, it is taken as the representative for centroid shifting
heuristics in further investigation.
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Modification of Termination Criteria

A strongly influencing degree of freedom are the termination criteria. They can be modified by
leaving some of them out, changing the PT, changing their composition or their weighting in
PT calculation. Table 6 to 8 show configurations for the related tests.

A reduction of the PT should lead to earlier convergence, as the heuristics are less fault tolerant.

Max. Number of Iterations Penalty Threshold Orthographic
1000 25 | 50 Yes

Table 6.: Configuration for heuristic comparison with reduced PT

Instead of decreasing PT it is increasing to a higher value. A higher fault tolerance should lead
to later convergence.

Max. Number of Iterations Penalty Threshold Orthographic
1000 150 | 200 Yes

Table 7.: Configuration for heuristic comparison with increased PT

As heuristics do not terminate by their design, removing all termination criteria leads to a lack of
convergence at all. Thus, the heuristics will always stop after a given number of iterations. There
is no guarantee that a result for this configuration corresponds to a local or global maximum,
as the heuristic stops regardless of prior results.

Max. Number of Iterations Penalty Threshold Orthographic
500 | 1000 | 2000 None Yes

Table 8.: Configuration for heuristic comparison without PT and different iterations

In the basic version of these heuristics, each penalty leads to an increase of the penalty counter
τ by one. This calculation stays the same over the entire running time. Changing this weighting
with increasing iterations leads us to the principle idea of Simulated Annealing [22]. In this
case, the penalty counter τ is increased by 1 for every 10% of the total maximum iterations.

τnew = τold + 1 +
(

10 ·
⌊

i

imax

⌋)
(6.4)

This alternative calculation rule is tested with the standard configuration.
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Change from Orthographic to Non-Orthographic Representation

Instead of creating an OSC representation for the result, it will be shown as Non-orthographic
Star Coordinates. This leads to an increase of size of the axes with great influence on the
separation. Therefore, scaling must be adapted for this visualization. A more detailed discussion
of the advantages and disadvantages of the two types of representation has already been carried
out in section 2.5 on a theoretic basis. These assumptions should be proven by tests. Table 9
shows the configuration for non-orthographic representation.

Max. Number of Iterations Penalty Threshold Orthographic
1000 100 No

Table 9.: Configuration for heuristic comparison without orthography

6.3. Results of Evaluation

The following section shows the results of the evaluation. First, the different heuristics are
compared with each other. Then, different configurations are compared using MSS. The com-
parisons are made qualitatively (visually) and quantitatively (using the metrics listed). As it
is one of the key components for this thesis, the following results will show many data visual-
izations. Evaluation is done on a 64-bit system with AMD Ryzen 5 3600 6-core CPU with 16
GB DDR4 RAM and AMD Radeon RX 5700 GPU with 8 GB VRAM. The operating system is
Windows 10.

6.3.1. Results for Comparison of Heuristics

Comparison of the different heuristics is organized in two parts. First, qualitative results for
each dataset used are shown by direct comparison of the heuristics. Then quantitative results
are presented for each heuristic by direct comparison of their performance for every dataset
used.

Qualitative Comparison of Heuristics

In the following, datasets will be discussed in alphabetical order. The visualizations are ordered
TLBR from variant 1 – RSS to variant 4 – PSS. Different colours of data points in projection
space signalize different classes. All visualizations have the same level of zoom and the exact
same section of the visualization was taken.

The first dataset is ecoli. Looking at Figure 21, it can be seen that there are only slight
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improvements in separation. Especially for MSS, classes of same colour are a bit denser than
for the other heuristics. Overall, however, there are no significant visual differences between the
heuristics for this dataset.

Figure 21.: Results for ecoli dataset with standard configuration

For iris dataset, illustrated in Figure 22, RSS, OSS and PSS seem to have low impact. This can
be seen in the very small change in the axes in the projection. For MSS, the black class shifts
with axis 1 towards the bottom of the projection. The overall distance between the classes has
increased. Furthermore, the green and the blue class are more separated than before. Axis 0
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has decreased significantly in size. From this, it can be deduced that this attribute has a minor
influence on separation of the given classes.

Figure 22.: Results for iris dataset with standard configuration

A similar observation can be made for statlog dataset. Results for statlog are illustrated in
Figure 23. MSS leads to a reasonable increase of separation, while all other heuristics do not
perceivably affect the projection in terms of separation. PSS causes a higher density of the overall
projection. Because of the high density of data points in projection space, any statements about
the impact of individual axes — especially for those with small impact — can hardly be made.
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This is particularly difficult because the coordinate origin is completely hidden by data points.
Therefore, it is visually difficult to relate axis lengths.

Figure 23.: Results for statlog dataset with standard configuration

Results for wdbc are shown in Figure 24. As expected for a dataset with two classes, the impact
of the implemented heuristics on wdbc is quite high. The results are very different from the
initial projection for every proposed heuristic. Results for RSS and OSS are quite similar. The
projection for MSS seems to be separated better than the previous two, as the overlap is a lot
smaller. For PSS the classes are very compact, but the overlap is quite high. Thus, separation
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is worse than for MSS.

Figure 24.: Results for wdbc dataset with standard configuration

For wine dataset (see Figure 25), results for RSS, OSS and MSS seem to be quite similar on the
first view. All three heuristics provide a good separation. However, there is still overlap between
the classes for these methods. MSS creates an overall denser visualization for the dataset than
RSS and OSS. For PSS, on the other hand, the resulting projection seems to be optimally
separated. There is no visible overlap between the three different classes in projection space.
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Figure 25.: Results for wine dataset with standard configuration

For RSS and OSS, it seems like they had no impact on the visualization for yeast dataset, as
there is no visible change of the axes in projection space (see Figure 26). MSS and PSS show
a slightly better separation than the initial projection. While both heuristics manipulated the
projection, the ratios and angles of the axes are very different in both cases.
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Figure 26.: Results for yeast dataset with standard configuration

Quantitative Comparison of Heuristics

The next step is the quantitative comparison of the four heuristics. Therefore, two tables have
been prepared for every dataset. One consists of the key values for each dataset, proposed for
every heuristic. The second one shows the actual impact of the heuristics on the key value for
each dataset. As all important information for the evaluation is already contained in the second
table, the first is not considered further. For the sake of completeness, the first tables can be
found in Appendix B. Quantitative results will be related to the qualitative findings.
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Table 10 shows the resulting differences for the defined metrics for RSS. RSS has rather small
increases for ∆DSC in most cases and even a decrease for yeast dataset. However, for some
datasets, ∆DSC has been increased significantly. The impact of ∆DSC correlates with a high
number of iterations in most cases.

For statlog CDC has almost doubled, while it has even been reduced for wdbc. For both ∆DSC

has been improved by an approximately same percentage. The overall number of iterations for
RSS is very low.

With a Penalty Threshold of 100, the heuristic must have been terminated by producing worse
results in every measured aspect before possibly reaching the threshold. However, since the
shifted centroid is chosen completely at random for every iteration, sample runs can vary widely.
Thus, the overall performance of RSS is not reliable.

dataset ∆DSC ∆CD CDC iterations
ecoli 1.19% 99.87% 100.42% 12
iris 0% 102.49% 105.29% 75

statlog 7.7% 99.67% 198.21% 64
wdbc 8.45% 138.83% 83.54% 852
wine 20.34% 102.17% 175.62% 423
yeast -0.06% 99.19% 100.84% 33

Table 10.: Impact on key values in comparison to initial projection for each dataset by RSS

According to Table 11 the results for OSS do not negatively affect the separation for any dataset.
However, OSS does not improve the results significantly more than RSS. Except for a much
worse result for statlog, the overall results for OSS relate to those from RSS. Since a displacement
of centroids is not carried out on the basis of the relative position in the projection space, but
by a fixed rule, many unfortunate shifts occur in the process.

dataset ∆DSC ∆CD CDC iterations
ecoli 0% 99.86% 100.16% 8
iris 0.67% 102.92% 107.06% 79

statlog 1.7% 99.93% 117.86% 13
wdbc 8.45% 139.15% 82.28% 685
wine 20.9% 102.04% 177.61% 456
yeast 0% 99.63% 100.11% 18

Table 11.: Impact on key values in comparison to initial projection for each dataset by OSS

In contrast to RSS and OSS, Minimum Selection Shift takes the relative position in the projection
space into consideration. The process of separation for wdbc dataset by MSS is illustrated in
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Figure 27.

Figure 27.: Process of separation for wdbc dataset by MSS

According to Table 12, MSS leads to the best overall results. Apart from ∆DSC for yeast
dataset, every single key value has increased compared to the initial projection. Therefore,
according to the metrics, MSS leads to a better separation for each dataset. The overall trend
of the impact on a dataset follows the pattern of RSS and OSS except for statlog, which showed
a disproportionately large increase of separability.

dataset ∆DSC ∆CD CDC iterations
ecoli 3.88% 100.79% 102.05% 214
iris 3.36% 115.24% 130.59% 551

statlog 20.21% 104.97% 370.54% 396
wdbc 10.03% 121.54% 124.05% 858
wine 20.9% 104.25% 191.04% 499
yeast 0.88% 96.54% 105.82% 68

Table 12.: Impact on key values in comparison to initial projection for each dataset by MSS

PSS does not shift centroids away from the centr<e, but data points towards their associated
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centroid. This is a contrasting approach to the other previously presented heuristics. The
process of separation for wine dataset by PSS is illustrated in Figure 29.

Figure 28.: Process of separation of wine dataset by PSS

Quantitative results for PSS show, that it is a double-edged sword. While it results in an
optimal separation for wine dataset, the overall performance for PSS is below the other proposed
methods. Looking at the projection of the wine dataset in comparison to the other datasets, the
centroids of the classes lie along different axes. This fact is extremely helpful to PSS in its way
of working.

dataset ∆DSC ∆CD iterations
ecoli -0.49% 99.21% 3
iris 0% 100% 3

statlog 1.45% 113.94% 20
wdbc 5.1% 129.91% 53
wine 27.68% 136.55% 255
yeast -2.63% 101.41% 15

Table 13.: Impact on key values in comparison to initial projection for each dataset by PSS
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Taking a closer look at the result for wine dataset, the classes can be visually separated by
lines between them. Figure 29 illustrates the separation with red lines. It was thus shown, that
an optimally separating linear projection exists. After achieving this results, another 150 runs
have proven that this result can be achieved reliably in every run. However, proof is only given
empirical, not mathematical.

Figure 29.: Optimally separated projection of wine dataset by PSS

6.3.2. Results for Behaviour with Different Parameters

As MSS has shown the overall best performance for the tested datasets, behaviour with different
parameters will be tested with this heuristic only. For better readability, discussion of visualiza-
tion and measures will be done at the end of the section. This has the advantage that measured
values and visualisations can be displayed together at the same time.

The results include 54 illustrations of 6 different datasets in 9 different parametrisations. In order
to make sure a measure is no complete outlier, 5 runs for each dataset in each parametrisation
have been carried out. However, an analysis for convergence and reliability will be done in the
next section.

48



Chapter 6. Evaluation 6.3. Results of Evaluation

Results for Ecoli Dataset

Figure 30.: Visualization for ecoli dataset with different modifications

parameter ∆DSC ∆CD CDC iterations
Standard 3.88% 100.79% 102.05% 214
PT=25 3.88% 101.01% 102.12% 210
PT=50 3.88% 100.99% 102.12% 216
PT=150 3.88% 100.88% 102.02% 235
PT=200 3.88% 100.88% 102.05% 254

500 Iterations 4.48% 100.32% 101.5% 500
1000 Iterations 5.08% 99.26% 99.97% 1000
2000 Iterations 5.08% 97.69% 96.29% 2000
PT Calculation 4.18% 100.71% 102.18% 163

Non-Orthographic 2.99% 71.55% 140.81% 48

Table 14.: Impact on key values by parameter change for ecoli dataset by MSS
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Results for Iris Dataset

Figure 31.: Visualization for iris dataset with different modifications

parameter ∆DSC ∆CD CDC iterations
Standard 3.36% 115.24% 130.59% 551
PT=25 3.36% 115.72% 130.29% 528
PT=50 3.36% 115.5% 130.29% 538
PT=150 3.36% 118.67% 130.59% 401
PT=200 3.36% 118.2% 130.59% 421

500 Iterations 3.36% 116.32% 130.59% 500
1000 Iterations 4.03% 110.07% 129.71% 1000
2000 Iterations 4.03% 108.24% 128.82% 2000
PT Calculation 3.36% 119.58% 130.29% 338

Non-Orthographic 2.69% 56.7% 263.24% 677

Table 15.: Impact on key values by parameter change for iris dataset by MSS
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Results for Statlog Dataset

Figure 32.: Visualization for statlog dataset with different modifications

parameter ∆DSC ∆CD CDC iterations
Standard 20.21% 104.97% 370.54% 396
PT=25 18.31% 104.08% 384.82% 330
PT=50 20.21% 104.82% 392.86% 341
PT=150 20.31% 104.91% 405.36% 392
PT=200 20.76% 105.24% 412.5% 418

500 Iterations 24.61% 109.28% 434.82% 500
1000 Iterations 28.26% 120.25% 442.86% 1000
2000 Iterations 25.81% 140.41% 416.96% 2000
PT Calculation 28.66% 119.18% 451.79% 717

Non-Orthographic 26.06% 53.12% 1508.93% 1000

Table 16.: Impact on key values by parameter change for statlog dataset by MSS
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Results for Wdbc Dataset

Figure 33.: Visualization for wdbc dataset with different modifications

parameter ∆DSC ∆CD CDC iterations
Standard 10.03% 121.54% 124.05% 858
PT=25 10.03% 120.91% 124.1% 811
PT=50 10.03% 121.56% 124.05% 813
PT=150 10.03% 121.54% 124.05% 871
PT=200 10.03% 121.53% 124.05% 893

500 Iterations 10.03% 120.9% 127.85% 500
1000 Iterations 10.03% 121.5% 122.78% 1000
2000 Iterations 10.03% 121.46% 122.78% 2000
PT Calculation 10.03% 121.56% 124.05% 799

Non-Orthographic 10.03% 18.9% 1076% 1000

Table 17.: Impact on key values by parameter change for wdbc dataset by MSS
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Results for Wine Dataset

Figure 34.: Visualization for wine dataset with different modifications

parameter ∆DSC ∆CD CDC iterations
Standard 20.09% 104.25% 191.04% 499
PT=25 18.08% 104.12% 173.13% 269
PT=50 19.21% 104.22% 177.11% 306
PT=150 22.04% 104.04% 197.51% 677
PT=200 22.03% 104.12% 196.02% 613

500 Iterations 22.03% 104.14% 191.54% 500
1000 Iterations 22.03% 103.84% 201.49% 1000
2000 Iterations 22.03% 103.73% 202.49% 2000
PT Calculation 19.21% 104.21% 177.61% 313

Non-Orthographic 17.51% 79.58% 240.3% 264

Table 18.: Impact on key values by parameter change for wine dataset by MSS
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Results for Yeast Dataset

Figure 35.: Visualization for yeast dataset with different modifications

parameter ∆DSC ∆CD CDC iterations
Standard 0.88% 96.54% 105.82% 68
PT=25 1.02% 96.34% 106.05% 74
PT=50 0.88% 96.51% 105.86% 68
PT=150 1.02% 96.55% 105.93% 69
PT=200 1.02% 96.57% 105.66% 67

500 Iterations 2.56% 101.25% 77.23% 500
1000 Iterations 4.59% 101.66% 67.32% 1000
2000 Iterations 4.59% 101.71% 67.2% 2000
PT Calculation 1.02% 96.56% 105.93% 69

Non-Orthographic 8.5% 26.46% 345.73% 1000

Table 19.: Impact on key values by parameter change for yeast dataset by MSS
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Analysis of Results for Different Parameters

Figure 30 shows the projections for different configuration parameters applied to ecoli dataset.
There is no projection that looks completely different from all the other projections. A change of
the PT works accordingly. However, for a low PT no local maximum has led to worse results and
for an extremely large PT and no local maximum has been overcome towards a better solution.

The best separation, according to DSC, is reached in later iterations. These are not reached
with the designed PT. For these results at 1000 and 2000 iterations, ∆DSC has a value of 1.2%
higher than for standard parameters. This leads to the conclusion, that the local maximum that
was found, is worse than an actual global maximum for this dataset. For both results, ∆CD

and CDC have slightly decreased. Thus, they seem to be no good indicators for the separation
of this dataset.

In Figure 31 the projections for different configuration parameters applied to iris dataset are
shown. Visualization and values for iris dataset lead to the same results as for ecoli dataset.
Thus, they underline the findings.

Figure 32 shows the projections for different configuration parameters applied to statlog dataset.
In contrast to ecoli and iris, another calculation formula for PT has led to the best results.
Nonetheless, the main trends of the other two data sets can also be observed here.

For wdbc dataset (shown in Figure 33) all different parametrisations lead to the exact same
value of ∆DSC. The different visualizations appear to be rotated in projection space with more
or less dense classes. However, the overlap between the black and the green class has to be the
same in every case. This could be interpreted as a limit of separation given by the structure of
the dataset itself. However, this hypothesis cannot be conclusively proven.

While results for wine dataset underline the overall trend of better solutions towards more
iterations, a few other assumptions can be made. For non-orthographic visualization in Figure
34 it can be observed, that even on a small scale absolute distance between the class centroids
does not inevitably lead to better separation. This can be observed in a much larger scale for
many other non-orthographic visualizations e.g. for statlog dataset. Thus, especially for non-
orthographic projections, CDC cannot be taken as a reliable metric for the grade of separation.

As the last dataset examined, yeast dataset is shown in Figure 35. For this dataset, the results
are worst in terms of separation. Nevertheless, results underline the trend of an early terminating
PT on a local maximum. Termination is very early after approximately 70 iterations for every
PT. This leads to the conclusion that the heuristic was terminated by an overall worse projection.

In summary, different values for PT do not influence the results significantly. Looking at the
results for forced numbers of iterations without termination criteria, it becomes clear that cal-
culation of PT needs to be reconsidered. Another factor could be the immediate termination if
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DSC, CD and CDC decrease on the same iteration. This condition leaves no space for a worse
projection in every given aspect. However, while testing this criterion has only rarely terminated
the heuristic.

6.3.3. Results for Convergence and Reliability

Convergence with regard to the number of iterations has been tested with a sample of 100 runs
for all used datasets with MSS. The histogram for these 100 runs is illustrated in Figure 36.
Statistical parameters for the sample are listed in Table 20.
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Figure 36.: Histogram for number of iterations in 100 runs with MSS in standard configuration
per dataset (TLBR: ecoli, iris, statlog, wdbc, wine, yeast)

dataset min max X s s2 v

ecoli 108 226 210.8515 22.1551 490.8477 0.1051
iris 370 380 374.8713 1.9883 3.9533 0.0053

statlog 219 689 479.802 120.4807 14515.6004 0.2511
wdbc 823 878 847.3636 12.0411 144.9889 0.0142
wine 328 574 447.0495 83.8255 7026.7075 0.1875
yeast 63 334 78.7822 43.7524 1914.2721 0.5554

Table 20.: Convergence with regard to the number of iterations for MSS

For iris and wdbc, convergence has a very low sample variance coefficient v. This means, that
multiple runs converge after approximately the same amount of iterations. However, for all the
other datasets, v is rather high. Especially, the extremely large difference between minimum
and maximum iterations for yeast and ecoli is an indicator for high variation for the number of
iterations. This is a first indicator, but does not necessarily lead to bad results. The design of
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the heuristic allows to find a solution of same quality at a later stage. Nevertheless, it would
be desirable finding the best possible result at the fastest possible time. Therefore, further
investigations are necessary regarding the reliability.

Reliability with regard to DSC for MSS has been tested with a sample of 100 runs for all used
datasets with MSS. The histogram for these 100 runs is illustrated in Figure 37. Statistical
parameters for the sample are listed in Table 21.
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Figure 37.: Histogram for DSC in 100 runs with MSS in standard configuration per dataset
(TLBR: ecoli, iris, statlog, wdbc, wine, yeast)

dataset min max X s s2 v

ecoli 0.6776 0.6835 0.6779 0.0012 0 0.0017
iris 0.9328 0.9328 0.9328 0 0 0

statlog 0.3447 0.5406 0.4462 0.0451 0.0020 0.1011
wdbc 0.963 0.963 0.963 0 0 0
wine 0.9152 0.9435 0.9274 0.0099 0 0.0107
yeast 0.2839 0.3223 0.286 0.0065 0 0.0226

Table 21.: Reliability with regard to DSC for MSS

For iris and wdbc dataset, reliability has zero variance. Thus, the exact same result for DSC
has been found throughout the entire sample size. Considering the convergence, termination
criteria have been very good for iris and wdbc dataset.

In contrast to the high variance on convergence, ecoli dataset has a very high reliability for the
resulting DSC. This means, that the same result is found after strongly fluctuating numbers of
iterations. Thus, earlier convergence would result in a better performance.

Results for wine dataset and yeast do have some variance. The range between minimum and
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maximum is approximately 3-4%. However, the sample variance coefficient v is at about 1% for
wine dataset and about 2% for yeast dataset. These values are not critical, but need could need
improvement. In the histogram for the yeast data set, it can be seen that almost all example
runs end at a value of approximately 0.286. However, since few runs end at a higher value, it
can be assumed that the termination criteria stop the heuristic at a local maximum and that
the larger maximum can thus only rarely be reached.

Apart from all the rather good results, statlog dataset has a very high sample variance coefficient
v. In difference to yeast dataset, this is not because of single values above a local minimum, but
because of variance between the results of every single run.

All these findings lead to the conclusion, that either the designed heuristic is not suitable to find
a better solution or the dimension of termination criteria does not fit the use-case for atleast
some of the used datasets.

6.3.4. Comparison with Other Results

For comparison the method proposed by Molchanov and Linsen [27] is taken into account. A
brief reminder: Projections represented as SC are modified by shifting a chosen class by Drag &
Drop of their associated centroid (see 2.3). This method has numerous disadvantages compared
to CO:

1. The method lacks of existence of sticky points. Thus, fixing points at a certain position while
moving others is not intended. As a result, the method has many fewer degrees of freedom.

2. Only centroids of classes are considered shift-able. Therefore, only whole classes can be shifted
by moving their centroid. CO offer an item-based shift configuration by setting status for every
single point independently. This leads to more flexibility when manipulating projections.

3. For all used datasets, the equation L′ ·M = P is ill-defined, as there are more dimensions than
classes. In order to compensate for the under-determined equation system, random samples of
projection points are added. This leads to a concept shift.

4. The approach presented is an interactive user-based implementation. Thus, finding a good
separation depends on the user. In order to test the method, an own implementation was made
according to the description in the paper. In several tries and shifts the author of this thesis
was not able to reach an optimally separating projection for wine dataset, although some of the
axes have already been extremely large.

Therefore, presented results and the theoretical advantages lead to the conclusion that CO are
the more promising technique for manipulation of linear projections in SC.
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7. Discussion

In this work, the idea of Composition Operators has been extended. Different heuristic ap-
proaches using CO for finding linear projections of high-dimensional data that show class sepa-
ration have been introduced.

At the outset, two question were defined that were to be answered in the course of this work.

1. Are there any datasets which are linear separable?

2. Can it be guaranteed that a separating embedding will always be found if the dataset
allows linearly separating embedding?

The first one is answered very straight forward: Yes, there are linear separable datasets. It has
been shown that optimal class separating projections do exist.

For the second question the answer is a bit more complicated. Results for multiple runs of
the heuristics are very stable and accurate in the empirical test environment presented in this
work. However, there is no mathematical proof given, that an existing separating embedding
will always be found. Chosen termination criteria lead to reliable convergence in most cases,
but do not always result in a best possible separation.

Presented heuristics improve separability in most cases. Minimum Selection Shift achieves the
best overall results. Point Selection Shift leads to an optimal separation of wine dataset. Es-
pecially when the centroids of the classes lie along different axes on the projection, a good
separation is possible.

The dimensioning of the termination criteria has led to very good results for some data sets. For
others, however, too strict termination conditions meant that global maxima were not or only
rarely reached. Thus, structure and calculation of Penalty Threshold are not optimized yet.

Even if the results presented in this thesis have partial potential for improvement, CO have been
convincing as a manipulation technique for linear projections. It has been presented as a user-
friendly item-based approach with high flexibility. The concept of manipulating a projection to
then achieve the needed input seems to be beneficial for class separation tasks. Compared to
other techniques such as [27], CO are superior in some respects.

Overall, the influence of the implemented heuristics on the separability is strongly dependent
on the respective data set. For datasets with very high dimensionality n, the orthographic
representation reaches its limits, as degrees of freedom vanish.

A final limitation to the approach taken in this thesis is the overall separability of a dataset. If a
dataset is not linearly separable by definition — such as iris dataset — there is no possible way
to separate classes within their projection. Therefore, the quality of a separation also depends
on the dataset itself.
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8. Future work

There are many options to potentially improve this implementation in the future. One of these
options could be a dynamic combination of the presented variants MSS and PSS in order to
improve density as well as distance between classes for a better separability at the same time.
Another option could be to set other termination criteria for the heuristics or modify existent.
This could be done in a way that they are influenced by characteristics of the underlying datasets.
Also, starting with a different initial projection could suit the heuristics method of operation
better and thus lead to better results. However, for all these assumptions, implementation and
testing have to follow in order to verify them.

A different technique with a completely different principle for automatic manipulation of pro-
jections with Composition Operators could also lead to better results, especially for dense class
centroids. A more complex system that takes more variables into consideration might lead
to more accurate manipulation operations, which then leads to better separation in projection
space.

Another field for future applications is Visual Machine Learning based on the class separation
embedding. When creating well separated projections in 2D projection space, this result can be
used to create feature vectors for VML. Thus, it can help in the development of classifiers as
proposed in [31].
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Appendix A:

Pseudocode for Heuristics

Heuristic 2: Random Selection Shift RSS
1 function heuristic_random_selection_shift(df_p, iterator, num_classes):

Data: df_p is the dataframe in projection space, iterator is the current iteration
step, num_classes is the amount of different classes in the dataset

Result: dp shift vector, selected_class to be shifted, calculated DSC_value,
calculated CD_value, calculated total_dist

/* extract star coords and class of data to a new dataframe */
2 df_star = df_p[[’X’,’Y’,’class’]]

/* calculate class centroids and save them in a new dataframe */
3 df_centroids = df_star.groupby(’class’, sort=True).mean().reset_index()

/* calculate coordinates of the central centroid */
4 central_centroid = df_centroids[[’X’, ’Y’]].mean()

/* call a function to calculate all distances between centroids */
5 df_distances = calc_centroid_distances(df_centroids)

/* calculate the distance from each point to its associated centroid */
6 df_centroid_distances = calc_dist_p_to_assoc_centroid(df_centroids, df_star)

/* calculate CD, DSC and total_dist for result */
7 CD_value = df_centroid_distances[’distance’].sum()
8 DSC_value = calc_dsc(df_centroids, df_star)
9 total_dist = df_distances[’distance’].sum()

/* randomly choose a class to be shifted */
10 selected_class = np.random.randint(num_classes)

/* select all distances for selected class */
11 selected_class_distances = df_distances.(df_distances[selected_class])

/* other_class is the nearest class to selected_class */
12 min_selected_class_distance = selected_class_distances[’distance’].idxmin()

/* calculate the new shifting vector dp */
13 dp = calc_dp(df_centroids, selected_class, other_class, central_centroid, num_iter)

Figure 38:: Pseudocode for RSS
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Heuristic 3: Order Selection Shift - OSS
1 function heuristic_order_selection_shift(df_p, iterator, num_classes):

Data: df_p is the dataframe in projection space, iterator is the current iteration
step, num_classes is the amount of different classes in the dataset

Result: dp shift vector, selected_class to be shifted, calculated DSC_value,
calculated CD_value, calculated total_dist

/* extract star coords and class of data to a new dataframe */
2 df_star = df_p[[’X’,’Y’,’class’]]

/* calculate class centroids and save them in a new dataframe */
3 df_centroids = df_star.groupby(’class’, sort=True).mean().reset_index()

/* calculate coordinates of the central centroid */
4 central_centroid = df_centroids[[’X’, ’Y’]].mean()

/* call a function to calculate all distances between centroids */
5 df_distances = calc_centroid_distances(df_centroids)

/* calculate the distance from each point to its associated centroid */
6 df_centroid_distances = calc_dist_p_to_assoc_centroid(df_centroids, df_star)

/* calculate CD, DSC and total_dist for result */
7 CD_value = df_centroid_distances[’distance’].sum()
8 DSC_value = calc_dsc(df_centroids, df_star)
9 total_dist = df_distances[’distance’].sum()

/* choose a class to be shifted by order */
10 selected_class = num_iter % num_classes)

/* select all distances for selected class */
11 selected_class_distances = df_distances.(df_distances[selected_class])

/* other_class is the nearest class to selected_class */
12 min_selected_class_distance = selected_class_distances[’distance’].idxmin()

/* calculate the new shifting vector dp */
13 dp = calc_dp(df_centroids, selected_class, other_class, central_centroid, num_iter)

Figure 39:: Pseudocode for OSS
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Heuristic 4: Point Selection Shift - PSS
1 function heuristic_order_selection_shift(df_p, iterator, num_classes):

Data: df_p is the dataframe in projection space, iterator is the current iteration
step, num_classes is the amount of different classes in the dataset

Result: dp shift vector, selected_class to be shifted, calculated DSC_value,
calculated CD_value, calculated total_dist

/* extract star coords and class of data to a new dataframe */
2 df_star = df_p[[’X’,’Y’,’class’]]

/* calculate class centroids and save them in a new dataframe */
3 df_centroids = df_star.groupby(’class’, sort=True).mean().reset_index()

/* calculate coordinates of the central centroid */
4 central_centroid = df_centroids[[’X’, ’Y’]].mean()

/* call a function to calculate all distances between centroids */
5 df_distances = calc_centroid_distances(df_centroids)

/* calculate the distance from each point to its associated centroid */
6 df_centroid_distances = calc_dist_p_to_assoc_centroid(df_centroids, df_star)

/* calculate CD, DSC and total_dist for result */
7 CD_value = df_centroid_distances[’distance’].sum()
8 DSC_value = calc_dsc(df_centroids, df_star)
9 total_dist = df_distances[’distance’].sum()

/* find the maxmimum distance */
10 max_dist_idx = df_centroid_distances[’distance’].idxmax()

/* select the point that is to be shifted */
11 centroid_id = df_centroid_distances.loc[max_dist_idx, ’class’]
12 centroid_coords = [df_centroids.loc[centroid_id, ’X’], df_centroids.loc[centroid_id,

’Y’]]
13 point_coord = [df_centroid_distances.loc[max_dist_idx, ’X’],

df_centroid_distances.loc[max_dist_idx, ’Y’]]
/* create noise */

14 noise = np.random.normal(0, 1, 1) * 100 / (1000 + num_iter)
/* calculate the new shifting vector dp */

15 dp = [centroid_coords[0] - point_coord[0] + noise, centroid_coords[1] -
point_coord[1] + noise]

Figure 40:: Pseudocode for PSS
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Appendix B. Key values for all heuristics for each dataset

Appendix B:

Key values for all heuristics for each dataset

dataset DSCstart DSCend CDstart CDend dc,total,start dc,total,end

ecoli 63.88% 65.07% 11636 11651 3073 3086
iris 89.93% 89.93% 3585 3498 340 358

statlog 21.06% 28.76% 65743 65963 112 222
wdbc 86.27% 94.72% 22820 16437 79 66
wine 72.32% 92.66% 7703 7539 201 353
yeast 27.44% 27.38% 44547 44911 2613 2635

Table 22:: Key values for RSS for each dataset

dataset DSCstart DSCend CDstart CDend dc,total,start dc,total,end

ecoli 63.88% 63.88% 11636 11652 3073 3078
iris 89.93% 90.6% 3585 3483 340 364

statlog 21.06% 22.76% 65743 65784 112 132
wdbc 86.27% 94.72% 22820 16399 79 65
wine 72.32% 93.22% 7703 7549 201 357
yeast 27.44% 27.44% 44547 44713 2613 2616

Table 23:: Key values for OSS for each dataset

dataset DSCstart DSCend CDstart CDend dc,total,start dc,total,end

ecoli 63.88% 67.76% 11636 11545 3073 3136
iris 89.93% 93.29% 3585 3111 340 444

statlog 21.06% 41.27% 65743 62631 112 415
wdbc 86.27% 96.3% 22820 18776 79 98
wine 72.32% 93.22% 7703 7389 201 384
yeast 27.44% 28.32% 44547 46156 2613 2765

Table 24:: Key values for MSS for each dataset
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Appendix B. Key values for all heuristics for each dataset

dataset DSCstart DSCend CDstart CDend

ecoli 63.88% 63.39% 11636 11729
iris 89.93% 89.93% 3585 3585

statlog 21.06% 22.51% 65743 57698
wdbc 86.27% 91.37% 22820 17566
wine 72.32% 100% 7703 5641
yeast 27.44% 24.81% 44547 43926

Table 25:: Key values for PSS for each dataset
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